Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Medicine and Health Sciences

Atrx Inactivation And Idh1-R132h Drive Preferential Sensitivity To Proton Vs. X-Ray Radiotherapy In Glioma Stem Cells, Ángel Adrián Garcés Dec 2021

Atrx Inactivation And Idh1-R132h Drive Preferential Sensitivity To Proton Vs. X-Ray Radiotherapy In Glioma Stem Cells, Ángel Adrián Garcés

Dissertations & Theses (Open Access)

Background: Glioma Stem Cells (GSCs) are self-renewable, treatment resistant cells in the glioma tumor mass known to promote tumor development. In contrast to traditional photon-based radiation therapy (XRT), proton radiation therapy (PRT) may induce more complex DNA damage and therefore might have the potential to eliminate GSCs. Although previous studies have individually linked IDH mutations, specifically IDH1R132H, and ATRX inactivating mutations to improved patient outcomes and suppressed DNA damage repair compared to their respective wild-types, the mechanisms by which these two genetic alterations interact in GSCs treated with PRT compared to XRT are currently unknown. We hypothesize that …


4d Ex Vivo Crispr/Cas9 Whole-Genome Screen To Identify Genes Regulating Lung Cancer Metastasis, Alexandria Plumer Dec 2021

4d Ex Vivo Crispr/Cas9 Whole-Genome Screen To Identify Genes Regulating Lung Cancer Metastasis, Alexandria Plumer

Dissertations & Theses (Open Access)

Metastatic lung cancer has a 5-year survival rate of 5%. Lung cancers tend to be asymptomatic until late stages, and almost 90% are not diagnosed until they are advanced. Metastases are very rare events, often initiated by a single cell from a primary tumor into a new niche at a distant location. Investigation of the early metastatic process is of urgent need for the development of early diagnostics and targeted therapeutics. We performed a proof-of-concept CRISPR/Cas9 whole genome knockout screen in the A549 lung adenocarcinoma cell line and utilized a novel ex vivo 4D lung metastasis model to find gene …


Lgr5 Regulation Of Stat3 Signaling And Drug Resistance In Colorectal Cancer, Tressie Posey, Tressie Alexandra Posey Dec 2021

Lgr5 Regulation Of Stat3 Signaling And Drug Resistance In Colorectal Cancer, Tressie Posey, Tressie Alexandra Posey

Dissertations & Theses (Open Access)

LGR5 Regulation of STAT3 Signaling and Drug Resistance in Colorectal Cancer

Tressie Alexandra Capri Posey B.S.

Advisory Professor: Kendra Carmon, Ph.D.

The greatest difficulty in treating colorectal cancer (CRC) is the development of drug resistance which leads to relapse after treatment and progression to metastasis. Cancer stem cells (CSCs) are believed to drive relapse because of their capacity to self-renew, acquire resistance mechanisms, and differentiate promoting tumor growth and heterogeneity. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is a bona-fide marker of CSCs and has been considered a viable target for CSC specific therapeutic development. While we showed targeting LGR5 …


Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula Dec 2021

Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula

Dissertations & Theses (Open Access)

The metabolic vulnerability of cancers has long been envisaged as an attractive window to develop novel therapeutic strategies. Metabolic flexibility at the cellular level encompasses the efficient rerouting of anabolic and catabolic pathways in response to varying environmental stimuli to maintain cellular homeostasis and sustain proliferation. The primary objective of this study is to identify metabolic vulnerabilities bestowed by KEAP1/NRF2 signaling axis through SLC7A11. SLC7A11 is a transcriptional target of NRF2, an essential regulator of cellular anti-oxidant response. Under unstressed basal conditions, NRF2 interacts with KEAP1, a tumor suppressor gene and a substrate adaptor protein of the Cullin3-dependent ubiquitin ligase …


Mutant Kras Alters Extracellular Vesicle Microrna Sorting In Pancreatic Cystic Neoplasms, Rachel L. Dittmar Dec 2021

Mutant Kras Alters Extracellular Vesicle Microrna Sorting In Pancreatic Cystic Neoplasms, Rachel L. Dittmar

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers by organ site with a 5-year survival rate of just 10.8%. This is largely because most patients do not experience symptoms until the disease has already metastasized. The best hope to cure PDAC is surgery, which can only be done with a curative intent at an early stage when the disease is localized. There are no reliable circulating, body-fluid-based biomarkers to detect early stage PDAC or its precursor lesions in a timely manner for effective surgical intervention. When potential PDAC precursor lesions, such as mucinous pancreatic cysts are found, there are …


Targeting Plasma Membrane Phosphatidylserine Content To Inhibit Oncogenic Kras Function, Walaa E. Kattan Aug 2021

Targeting Plasma Membrane Phosphatidylserine Content To Inhibit Oncogenic Kras Function, Walaa E. Kattan

Dissertations & Theses (Open Access)

The small GTPase KRAS, which is frequently mutated in human cancers, must be localized to the plasma membrane (PM) for biological activity. We recently showed that the KRAS C-terminal membrane anchor exhibits exquisite lipid-binding specificity for select species of phosphatidylserine (PtdSer). We therefore investigated whether reducing PM PtdSer content is sufficient to abrogate KRAS oncogenesis. Oxysterol-related binding proteins ORP5 and ORP8 exchange PtdSer synthesized in the ER for phosphatidylinositol-4-phosphate (PI4P) synthesized in the PM. We show that depletion of ORP5 or ORP8 reduced PM PtdSer levels, resulting in extensive mislocalization of KRAS from the PM. Concordantly, ORP5 or ORP8 depletion …


Understanding The Pathogenesis Of Renal Medullary Carcinoma, Melinda Soeung Aug 2021

Understanding The Pathogenesis Of Renal Medullary Carcinoma, Melinda Soeung

Dissertations & Theses (Open Access)

Renal medullary carcinoma (RMC) is a lethal cancer that predominantly affects young individuals with sickle cell trait (SCT). It is not currently understood why RMC only affects certain individuals with SCT. We found that patients with RMC more frequently participated in high-intensity exercise than matched controls. Using mouse models of SCT, we demonstrated the significant increase of renal hypoxia in the right kidney following high- but not moderate-intensity exercise. We also demonstrated in cell culture studies that SMARCB1 is ubiquitinated for proteasome-mediated degradation in hypoxia, and the re-expression of SMARCB1 leads to compromised proliferation in renal cells specifically in the …


Epithelial Memory Of Resolved Inflammation Limits Tissue Damage While Promoting Pancreatic Tumorigenesis, I-Lin Ho Aug 2021

Epithelial Memory Of Resolved Inflammation Limits Tissue Damage While Promoting Pancreatic Tumorigenesis, I-Lin Ho

Dissertations & Theses (Open Access)

Inflammation is a major risk factor for pancreatic ductal adenocarcinoma. When occurring in the context of pancreatitis, mutations of KRAS accelerate tumor development. We discovered that long after its complete resolution, a transient inflammatory event primes pancreatic epithelial cells to subsequent transformation by oncogenic KRAS. Upon recovery from acute inflammation, epithelial cells of the pancreas display an enduring adaptive response associated with sustained transcriptional and epigenetic reprogramming. Such adaptation enables the prompt reactivation of acinar-to-ductal metaplasia (ADM) upon subsequent inflammatory events, thus efficiently limiting tissue damage via rapid decrease of zymogen production. We propose that since activating mutations of KRAS …


Combination Of Oncolytic Adenoviruses, T-Cell Activation, And Blockade Of Ido Metabolic Circuitry For The Treatment Of Glioma, Teresa Nguyen Aug 2021

Combination Of Oncolytic Adenoviruses, T-Cell Activation, And Blockade Of Ido Metabolic Circuitry For The Treatment Of Glioma, Teresa Nguyen

Dissertations & Theses (Open Access)

Glioblastoma is the most common malignant primary brain tumor in adults; the current aggressive treatment results in a 5% five-year survival rate. More effective therapies should be developed. One promising alternative is oncolytic adenovirus, Delta-24-RGD, which elicits cancer cell lysis and immunogenic cell death. In fact, Delta-24-RGD produced complete responses in 20% of recurrent glioblastoma patients through immune mechanisms that activate anti-tumor cytotoxic properties of T-cells. This cytolytic effect can further be enhanced by adding immune agonists, namely OX40L, which engages the OX40 receptor to co-stimulate activated T cells for enhanced proliferation. Hence, we produced the next generation of Delta-24-RGD, …


Assessing The Outcomes Of Blocking Ccl2-Ccr2 Signaling Axis On Breast Cancer Brain Metastasis, Yutao Qi May 2021

Assessing The Outcomes Of Blocking Ccl2-Ccr2 Signaling Axis On Breast Cancer Brain Metastasis, Yutao Qi

Dissertations & Theses (Open Access)

Breast cancer brain metastases have remained one of the most intense challenges for precision cancer therapeutics, but current treatment options are limited and not curative. Recently, our lab reported that adoptive PTEN downregulation in metastatic breast tumor cells activates PI3K/NF-ƙB signaling and increases the secretion of the chemokine CCL2, which enhances the chemotaxis of CCR2+ myeloid cells, a major subpopulation of bone marrow-derived myeloid cells (BMDMs), from peripheral blood into the brain tumor microenvironment (TME), eventually promoting brain metastasis outgrowth by driving immune suppression. Here, in this project we have been aiming to develop effective therapies by immune-modulating the …