Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Kshv Infection Of Endothelial Cells Manipulates Cxcr7-Mediated Signaling: Implications For Kaposi’S Sarcoma Progression And Intervention, Jennifer Totonchy, Lisa Clepper, Janet Douglas, Liron Pantanowitz, Klaus Fruh, Ashlee V. Moses Jan 2012

Kshv Infection Of Endothelial Cells Manipulates Cxcr7-Mediated Signaling: Implications For Kaposi’S Sarcoma Progression And Intervention, Jennifer Totonchy, Lisa Clepper, Janet Douglas, Liron Pantanowitz, Klaus Fruh, Ashlee V. Moses

Pharmacy Faculty Articles and Research

"CXCR7 was recently characterized as an alternative receptor for the chemokine CXCL12/SDF-1, previously thought to bind and signal exclusively through CXCR4.We recently identified CXCR7 as a key cellular factor in the endothelial cell (EC) dysfunction associated with KSHV infection. CXCL12 signaling is critically associated with tumor growth, angiogenesis and metastasis in several diverse tumors and is one of the most studied chemokine/chemokine receptor interactions in cancer systems. The tumorigenic activity of the CXCL12 signaling axis offers an attractive target for therapeutic intervention in multiple cancers including Kaposi’s Sarcoma (KS). However, most of the research to date was based on the …


Simulating Molecular Mechanisms Of The Mdm2-Mediated Regulatory Interactions: A Conformational Selection Model Of The Mdm2 Lid Dynamics, Gennady M. Verkhivker Jan 2012

Simulating Molecular Mechanisms Of The Mdm2-Mediated Regulatory Interactions: A Conformational Selection Model Of The Mdm2 Lid Dynamics, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications …


Effective Non-Viral Delivery Of Sirna To Acute Myeloid Leukemia Cells With Lipid-Substituted Polyethylenimines, Breanne Landry Jan 2012

Effective Non-Viral Delivery Of Sirna To Acute Myeloid Leukemia Cells With Lipid-Substituted Polyethylenimines, Breanne Landry

Pharmacy Faculty Articles and Research

Use of small interfering RNA (siRNA) is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2) with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ~0.5 and led to siRNA/polymer complexes of …


Probing Molecular Mechanisms Of The Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators Of Functional Dynamics, Anshuman Dixit, Gennady M. Verkhivker Jan 2012

Probing Molecular Mechanisms Of The Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators Of Functional Dynamics, Anshuman Dixit, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could …