Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Dispersion Of Cytotoxic Properties Of Multi-Walled Carbon Nanotubes Suspended In Biological Solutions With Tween 80: Their Role In Enhancing Killing Effects Of Nanosecond Pulse Electric Fields On Tumor Cell Lines, Bhargava S. Kalluri Oct 2010

Dispersion Of Cytotoxic Properties Of Multi-Walled Carbon Nanotubes Suspended In Biological Solutions With Tween 80: Their Role In Enhancing Killing Effects Of Nanosecond Pulse Electric Fields On Tumor Cell Lines, Bhargava S. Kalluri

Biological Sciences Theses & Dissertations

The objective of this study was to determine whether multi-walled carbon nanotubes (MWCNTs) suspended in the surfactant Tween 80 give an additive killing effect on tumor cells when exposed to nsPEFs. In this study, MWCNTs were suspended in DMEM and RPMI with or without T80 (surfactant). The size distribution of MWCNTs suspended in these solutions was evaluated with a Delsa™ Nano Zeta potential and sub micro particle Size Analyzer and confirmed with microscopy. The cytotoxicity of MWCNTs dispersed in different concentrations of T80 was evaluated in PANC1 (Human pancreatic cancer cell line) and Jurkat cell lines (Human T-cell lymphoblast cell …


Bioelectric Applications For Treatment Of Melanoma, Stephen J. Beebe, Karl H. Schoenbach, Richard Heller Jan 2010

Bioelectric Applications For Treatment Of Melanoma, Stephen J. Beebe, Karl H. Schoenbach, Richard Heller

Bioelectrics Publications

Two new cancer therapies apply bioelectric principles. These methods target tumor structures locally and function by applying millisecond electric fields to deliver plasmid DNA encoding cytokines using electrogene transfer (EGT) or by applying rapid rise-time nanosecond pulsed electric fields (nsPEFs). EGT has been used to locally deliver cytokines such as IL-12 to activate an immune response, resulting in bystander effects. NsPEFs locally induce apoptosis-like effects and affect vascular networks, both promoting tumor demise and restoration of normal vascular homeostasis. EGT with IL-12 is in melanoma clinical trials and nsPEFs are used in models with B16F10 melanoma in vitro and in …


Prostate Cancer Region Prediction Using Maldi Mass Spectra, Ayyappa Vadlamudi, Shao-Hui Chuang, Xiaoyan Sun, Lisa Cazares, Julius Nyalwidhe, Dean Troyer, O. John Semmes, Jiang Li, Frederic D. Mckenzie Jan 2010

Prostate Cancer Region Prediction Using Maldi Mass Spectra, Ayyappa Vadlamudi, Shao-Hui Chuang, Xiaoyan Sun, Lisa Cazares, Julius Nyalwidhe, Dean Troyer, O. John Semmes, Jiang Li, Frederic D. Mckenzie

Electrical & Computer Engineering Faculty Publications

For the early detection of prostate cancer, the analysis of the Prostate-specific antigen (PSA) in serum is currently the most popular approach. However, previous studies show that 15% of men have prostate cancer even their PSA concentrations are low. MALDI Mass Spectrometry (MS) proves to be a better technology to discover molecular tools for early cancer detection. The molecular tools or peptides are termed as biomarkers. Using MALDI MS data from prostate tissue samples, prostate cancer biomarkers can be identified by searching for molecular or molecular combination that can differentiate cancer tissue regions from normal ones. Cancer tissue regions are …


Destruction Of Α -Synuclein Based Amyloid Fibrils By A Low Temperature Plasma Jet, Erdinc Karakas, Agatha Munyanyi, Lesley Greene, Mounir Laroussi Jan 2010

Destruction Of Α -Synuclein Based Amyloid Fibrils By A Low Temperature Plasma Jet, Erdinc Karakas, Agatha Munyanyi, Lesley Greene, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the plasma pencil, a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.