Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicine and Health Sciences

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

Dissertations & Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and …


Gating Mechanisms Of The Canonical Trp Channel Isoform Trpc4, Dhananjay P. Thakur Aug 2015

Gating Mechanisms Of The Canonical Trp Channel Isoform Trpc4, Dhananjay P. Thakur

Dissertations & Theses (Open Access)

Non-selective cation channels formed by Transient Receptor Potential Canonical (TRPC) proteins play important roles in regulatory and pathophysiological processes. These channels are known to be activated downstream from phospholipase C (PLC) signaling. However, the mechanism by which the PLC pathway activates TRPC4/C5 remains unclear. Uniquely, TRPC4 is maximally activated only when two separate G protein pathways, Gq/11 and Gi/o, are co-stimulated, making it a coincidence detector of Gq/11- and Gi/o -coupled receptor activation. Using HEK293 cells co-expressing mouse TRPC4β and selected G protein-coupled receptors, I observed that coincident stimulation of Gi/o proteins and …


Investigating The Interaction Of Aurka And Ube2c In Colorectal Cancer Cells, Apurva M. Hegde Aug 2015

Investigating The Interaction Of Aurka And Ube2c In Colorectal Cancer Cells, Apurva M. Hegde

Dissertations & Theses (Open Access)

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the US. Among the many genomic aberrations previously implicated in colorectal cancer, recurrent amplification of chromosome 20q is frequently associated with liver metastasis. Previous research in our lab identified a gene signature on chromosome 20q associated with colorectal cancer progression. In this study, one of the genes in the signature, the ubiquitin conjugating enzyme UBE2C, was identified through preliminary bioinformatics analysis as a candidate for further examination of its role in CRC progression. Co-expression analysis of UBE2C in tumor-normal datasets from the public database Oncomine revealed all the …


Actions Of Pi3k-Delta Inhibitor, Idelalisib, And Its Combination With Bendamustine In Chronic Lymphocytic Leukemia, Prexy Modi May 2015

Actions Of Pi3k-Delta Inhibitor, Idelalisib, And Its Combination With Bendamustine In Chronic Lymphocytic Leukemia, Prexy Modi

Dissertations & Theses (Open Access)

Class I phosphatidylinositol 3-kinase isoforms (α, β, δ, and γ) play a major role in cancer cell growth and survival. PI3K α and β are most studied. PI3K pathway is highly dysregulated in many cancers and aberrant PI3K signaling is associated with oncogene mutations and disease progression in solid tumors and in hematologic malignancies.

Chronic lymphocytic leukemia (CLL) is driven by B-cell receptor (BCR) signaling that promotes B-cell proliferation and survival. PI3K is a critical node in BCR pathway and PI3Kδ has a pivotal role in B-cell development and maintenance and this isoform is over-expressed in many B-cell malignancies, including …


Rest Regulatory Circuit Controls Distinct Oncogenic Properties Of Glioblastoma Stem Cells Through Specific Micrornas, Anantha L Marisetty May 2015

Rest Regulatory Circuit Controls Distinct Oncogenic Properties Of Glioblastoma Stem Cells Through Specific Micrornas, Anantha L Marisetty

Dissertations & Theses (Open Access)

Glioblastoma Multiforme (GBM) is the most common and aggressive primary malignant brain tumor in adults. With an average survival of only 12-16 months the prognosis for GBM patients remains dismal, with less than 5% of patients surviving 5 years. New mechanism-based approaches are necessary for the management of patients with GBM. Many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs). These GSCs are resistant to chemo- and radiation therapies, and are believed to be responsible for tumor recurrence. In a recent paper from our lab we have shown that REST, RE1-silencing transcription factor, regulates oncogenic …


Igfbp2 Potentiates Egfr-Stat3 Signaling In Glioma, Yingxuan Chua May 2015

Igfbp2 Potentiates Egfr-Stat3 Signaling In Glioma, Yingxuan Chua

Dissertations & Theses (Open Access)

Gliomas are clinically challenging brain tumors with dismal survival rates due to its infiltrative nature and ineffective standard therapy. Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the contributions of intracellular IGFBP2 to tumor development and progression are poorly understood. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which subsequently activates STAT3 signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via …