Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Selected Works

Reactive oxygen species (ROS)

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu Nov 2016

Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu

Yanling Yan

Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of Na/K-ATPase and sodium/proton exchanger isoform 3, and inhibition of active transepithelial 22Na+ transport. Disruption of the Na/K-ATPase·c-Src signaling complex attenuated ouabain-stimulated protein carbonylation. Ouabain-stimulated protein carbonylation is reversed after removal of ouabain, and this reversibility is largely independent of de novo protein synthesis and degradation by either the lysosome or the proteasome pathways. Furthermore, …


Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu Oct 2016

Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu

Zijian Xie

Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of Na/K-ATPase and sodium/proton exchanger isoform 3, and inhibition of active transepithelial 22Na+ transport. Disruption of the Na/K-ATPase·c-Src signaling complex attenuated ouabain-stimulated protein carbonylation. Ouabain-stimulated protein carbonylation is reversed after removal of ouabain, and this reversibility is largely independent of de novo protein synthesis and degradation by either the lysosome or the proteasome pathways. Furthermore, …


Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu Jul 2015

Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu

Nader G. Abraham

Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of Na/K-ATPase and sodium/proton exchanger isoform 3, and inhibition of active transepithelial 22Na+ transport. Disruption of the Na/K-ATPase·c-Src signaling complex attenuated ouabain-stimulated protein carbonylation. Ouabain-stimulated protein carbonylation is reversed after removal of ouabain, and this reversibility is largely independent of de novo protein synthesis and degradation by either the lysosome or the proteasome pathways. Furthermore, ouabain stimulated direct …


Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu Jul 2015

Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu

Joseph I Shapiro MD

Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of Na/K-ATPase and sodium/proton exchanger isoform 3, and inhibition of active transepithelial 22Na+ transport. Disruption of the Na/K-ATPase·c-Src signaling complex attenuated ouabain-stimulated protein carbonylation. Ouabain-stimulated protein carbonylation is reversed after removal of ouabain, and this reversibility is largely independent of de novo protein synthesis and degradation by either the lysosome or the proteasome pathways. Furthermore, ouabain stimulated direct …


Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu Jul 2015

Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu

Jiang Liu

Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of Na/K-ATPase and sodium/proton exchanger isoform 3, and inhibition of active transepithelial 22Na+ transport. Disruption of the Na/K-ATPase·c-Src signaling complex attenuated ouabain-stimulated protein carbonylation. Ouabain-stimulated protein carbonylation is reversed after removal of ouabain, and this reversibility is largely independent of de novo protein synthesis and degradation by either the lysosome or the proteasome pathways. Furthermore, ouabain stimulated direct …