Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Attenuation Of Na/K-Atpase Mediated Oxidant Amplification With Pnaktide Ameliorates Experimental Uremic Cardiomyopathy, Jiang Liu, Jiang Tian, Muhammad Chaudhry, Nader G. Abraham, Joseph I Shapiro Jun 2017

Attenuation Of Na/K-Atpase Mediated Oxidant Amplification With Pnaktide Ameliorates Experimental Uremic Cardiomyopathy, Jiang Liu, Jiang Tian, Muhammad Chaudhry, Nader G. Abraham, Joseph I Shapiro

Jiang Liu

We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic …


Gender Differences In The Development Of Uremic Cardiomyopathy Following Partial Nephrectomy: Role Of Progesterone, Christopher A. Drummond, George Buddny, Steven T. Haller, Jiang Liu, Yanling Yan, Zijian Xie, Deepak Malhotra, Joseph I. Shapiro Md, Jiang Tian Jul 2015

Gender Differences In The Development Of Uremic Cardiomyopathy Following Partial Nephrectomy: Role Of Progesterone, Christopher A. Drummond, George Buddny, Steven T. Haller, Jiang Liu, Yanling Yan, Zijian Xie, Deepak Malhotra, Joseph I. Shapiro Md, Jiang Tian

Jiang Liu

Gender difference has been suggested as a risk factor for developing cardiovascular and renal diseases in humans and experimental animals. As a major sex hormone, progesterone was reported to compete with cardiotonic steroid binding to Na/K-ATPase. Our previous publication demonstrated that cardiotonic steroids (e.g., marinobufagenin) play an important role in the development of experimental uremic cardiomyopathy. We also observed that the putative mineralocorticoid antagonists, spironolactone and its major metabolite canrenone, antagonize binding of cardiotonic steroids to Na/K-ATPase in a competitive manner and also ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy. In the following studies, we noted that progesterone displayed …


Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu Jul 2015

Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu

Jiang Liu

Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of Na/K-ATPase and sodium/proton exchanger isoform 3, and inhibition of active transepithelial 22Na+ transport. Disruption of the Na/K-ATPase·c-Src signaling complex attenuated ouabain-stimulated protein carbonylation. Ouabain-stimulated protein carbonylation is reversed after removal of ouabain, and this reversibility is largely independent of de novo protein synthesis and degradation by either the lysosome or the proteasome pathways. Furthermore, ouabain stimulated direct …