Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

University of Kentucky

Series

Keyword
Publication Year
Publication

Articles 1 - 30 of 119

Full-Text Articles in Medicine and Health Sciences

Prostacyclin Promotes Degenerative Pathology In A Model Of Alzheimer’S Disease, Tasha R. Womack, Craig T. Vollert, Odochi Ohia-Nwoko, Monika Schmitt, Saghi Montazari, Tina L. Beckett, David Mayerich, M. Paul Murphy, Jason L. Eriksen Feb 2022

Prostacyclin Promotes Degenerative Pathology In A Model Of Alzheimer’S Disease, Tasha R. Womack, Craig T. Vollert, Odochi Ohia-Nwoko, Monika Schmitt, Saghi Montazari, Tina L. Beckett, David Mayerich, M. Paul Murphy, Jason L. Eriksen

Molecular and Cellular Biochemistry Faculty Publications

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is the most common form of dementia in aged populations. A substantial amount of data demonstrates that chronic neuroinflammation can accelerate neurodegenerative pathologies. In AD, chronic neuroinflammation results in the upregulation of cyclooxygenase and increased production of prostaglandin H2, a precursor for many vasoactive prostanoids. While it is well-established that many prostaglandins can modulate the progression of neurodegenerative disorders, the role of prostacyclin (PGI2) in the brain is poorly understood. We have conducted studies to assess the effect of elevated prostacyclin biosynthesis in a mouse model of AD. Upregulated prostacyclin expression …


Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich Dec 2021

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich

Center for Muscle Biology Faculty Publications

There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22–24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation. The epigenetic age of muscle …


Untargeted Lipidomics Of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes In Cancer Vs. Non-Cancer Tissue, Joshua M. Mitchell, Robert M. Flight, Hunter N. B. Moseley Oct 2021

Untargeted Lipidomics Of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes In Cancer Vs. Non-Cancer Tissue, Joshua M. Mitchell, Robert M. Flight, Hunter N. B. Moseley

Molecular and Cellular Biochemistry Faculty Publications

Lung cancer remains the leading cause of cancer death worldwide and non-small cell lung carcinoma (NSCLC) represents 85% of newly diagnosed lung cancers. In this study, we utilized our untargeted assignment tool Small Molecule Isotope Resolved Formula Enumerator (SMIRFE) and ultra-high-resolution Fourier transform mass spectrometry to examine lipid profile differences between paired cancerous and non-cancerous lung tissue samples from 86 patients with suspected stage I or IIA primary NSCLC. Correlation and co-occurrence analysis revealed significant lipid profile differences between cancer and non-cancer samples. Further analysis of machine-learned lipid categories for the differentially abundant molecular formulas identified a high abundance sterol, …


An Empirical Pipeline For Personalized Diagnosis Of Lafora Disease Mutations, M. Kathryn Brewer, Maria Machio-Castello, Rosa Viana, Jeremiah L. Wayne, Andrea Kuchtová, Zoe R. Simmons, Sarah Sternbach, Sheng Li, Maria Adelaida García-Gimeno, Jose M. Serratosa, Pascual Sanz, Craig W. Vander Kooi, Matthew S. Gentry Oct 2021

An Empirical Pipeline For Personalized Diagnosis Of Lafora Disease Mutations, M. Kathryn Brewer, Maria Machio-Castello, Rosa Viana, Jeremiah L. Wayne, Andrea Kuchtová, Zoe R. Simmons, Sarah Sternbach, Sheng Li, Maria Adelaida García-Gimeno, Jose M. Serratosa, Pascual Sanz, Craig W. Vander Kooi, Matthew S. Gentry

Molecular and Cellular Biochemistry Faculty Publications

Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical …


Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson Sep 2021

Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson

Physiology Faculty Publications

BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field.

METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4.

RESULTS: Single-cell …


Effect Of Clinical Isolate Or Cleavage Site Mutations In The Sars-Cov-2 Spike Protein On Protein Stability, Cleavage, And Cell-Cell Fusion, Chelsea T. Barrett, Hadley E. Neal, Kearstin Edmonds, Carole L. Moncman, Rachel Thompson, Jean M. Branttie, Kerri Beth Boggs, Cheng-Yu Wu, Daisy W. Leung, Rebecca E. Dutch Jun 2021

Effect Of Clinical Isolate Or Cleavage Site Mutations In The Sars-Cov-2 Spike Protein On Protein Stability, Cleavage, And Cell-Cell Fusion, Chelsea T. Barrett, Hadley E. Neal, Kearstin Edmonds, Carole L. Moncman, Rachel Thompson, Jean M. Branttie, Kerri Beth Boggs, Cheng-Yu Wu, Daisy W. Leung, Rebecca E. Dutch

Molecular and Cellular Biochemistry Faculty Publications

The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell-cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2-infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell-cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has …


Phenolic Compounds Of Red Wine Aglianico Del Vulture Modulate The Functional Activity Of Macrophages Via Inhibition Of Nf-Κb And The Citrate Pathway, Anna Santarsiero, Paolo Convertini, Antonio Vassallo, Valentina Santoro, Simona Todisco, Dominga Iacobazzi, Yvonne N. Fondufe-Mittendorf, Giuseppe Martelli, Marcos R. De Oliveira, Rosangela Montanaro, Vincenzo Brancaleone, Johannes Stöckl, Vittoria Infantino May 2021

Phenolic Compounds Of Red Wine Aglianico Del Vulture Modulate The Functional Activity Of Macrophages Via Inhibition Of Nf-Κb And The Citrate Pathway, Anna Santarsiero, Paolo Convertini, Antonio Vassallo, Valentina Santoro, Simona Todisco, Dominga Iacobazzi, Yvonne N. Fondufe-Mittendorf, Giuseppe Martelli, Marcos R. De Oliveira, Rosangela Montanaro, Vincenzo Brancaleone, Johannes Stöckl, Vittoria Infantino

Molecular and Cellular Biochemistry Faculty Publications

Phenolic compounds of red wine powder (RWP) extracted from the Italian red wine Aglianico del Vulture have been investigated for the potential immunomodulatory and anti-inflammatory capacity on human macrophages. These compounds reduce the secretion of IL-1β, IL-6, and TNF-α proinflammatory cytokines and increase the release of IL-10 anti-inflammatory cytokine induced by lipopolysaccharide (LPS). In addition, RWP restores Annexin A1 levels, thus involving activation of proresolutive pathways. Noteworthy, RWP lowers NF-κB protein levels, promoter activity, and nuclear translocation. As a consequence of NF-κB inhibition, reduced promoter activities of SLC25A1—encoding the mitochondrial citrate carrier …


A Screen Of Fda-Approved Drugs Identifies Inhibitors Of Protein Tyrosine Phosphatase 4a3 (Ptp4a3 Or Prl-3), Dylan R. Rivas, Mark Vincent C. Dela Cerna, Caroline N. Smith, Shilpa Sampathi, Blaine G. Patty, Donghan Lee, Jessica S. Blackburn May 2021

A Screen Of Fda-Approved Drugs Identifies Inhibitors Of Protein Tyrosine Phosphatase 4a3 (Ptp4a3 Or Prl-3), Dylan R. Rivas, Mark Vincent C. Dela Cerna, Caroline N. Smith, Shilpa Sampathi, Blaine G. Patty, Donghan Lee, Jessica S. Blackburn

Molecular and Cellular Biochemistry Faculty Publications

Protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3) is highly expressed in a variety of cancers, where it promotes tumor cell migration and metastasis leading to poor prognosis. Despite its clinical significance, small molecule inhibitors of PRL-3 are lacking. Here, we screened 1443 FDA-approved drugs for their ability to inhibit the activity of the PRL phosphatase family. We identified five specific inhibitors for PRL-3 as well as one selective inhibitor of PRL-2. Additionally, we found nine drugs that broadly and significantly suppressed PRL activity. Two of these broad-spectrum PRL inhibitors, Salirasib and Candesartan, blocked PRL-3-induced migration in human embryonic kidney cells …


The Context-Dependent Impact Of Integrin-Associated Cd151 And Other Tetraspanins On Cancer Development And Progression: A Class Of Versatile Mediators Of Cellular Function And Signaling, Tumorigenesis And Metastasis, Sonia F. Erfani, Hui Hua, Yueyin Pan, Binhua P. Zhou, Xiuwei H. Yang Apr 2021

The Context-Dependent Impact Of Integrin-Associated Cd151 And Other Tetraspanins On Cancer Development And Progression: A Class Of Versatile Mediators Of Cellular Function And Signaling, Tumorigenesis And Metastasis, Sonia F. Erfani, Hui Hua, Yueyin Pan, Binhua P. Zhou, Xiuwei H. Yang

Molecular and Cellular Biochemistry Faculty Publications

As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition …


Chronic Voluntary Alcohol Drinking Causes Anxiety-Like Behavior, Thiamine Deficiency, And Brain Damage Of Female Crossed High Alcohol Preferring Mice, Hong Xu, Hui Li, Dexiang Liu, Wen Wen, Mei Xu, Jacqueline A. Frank, Jing Chen, Haining Zhu, Nicholas J. Grahame, Jia Luo Mar 2021

Chronic Voluntary Alcohol Drinking Causes Anxiety-Like Behavior, Thiamine Deficiency, And Brain Damage Of Female Crossed High Alcohol Preferring Mice, Hong Xu, Hui Li, Dexiang Liu, Wen Wen, Mei Xu, Jacqueline A. Frank, Jing Chen, Haining Zhu, Nicholas J. Grahame, Jia Luo

Molecular and Cellular Biochemistry Faculty Publications

The central nervous system is vulnerable to chronic alcohol abuse, and alcohol dependence is a chronically relapsing disorder which causes a variety of physical and mental disorders. Appropriate animal models are important for investigating the underlying cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer alcohol to water when given free access. In the present study, we used female cHAP mice as a model of chronic voluntary drinking to evaluate the effects of alcohol on neurobehavioral and neuropathological changes. The female cHAP mice had free-choice access to 10% ethanol and water, while control mice had access to water …


Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun Jan 2021

Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun

Neuroscience Faculty Publications

N-glycans and lipids are structural metabolites that play important roles in cellular processes. Both show unique regional distribution in tissues; therefore, spatial analyses of these metabolites are crucial to our understanding of cellular physiology. Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is an innovative technique that enables in situ detection of analytes with spatial distribution. This workflow details a MALDI-MSI protocol for the spatial profiling of N-glycans and lipids from tissues following application of enzyme and MALDI matrix.

For complete details on the use and execution of this protocol, please refer to Drake et al. (2018) and Andres et al. (2020).


Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee Jan 2021

Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee

Sanders-Brown Center on Aging Faculty Publications

Alzheimer’s disease (AD) includes several hallmarks comprised of amyloid-β (Aβ) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1 …


Epigenetic Regulation Of Wnt Signaling By Carboxamide-Substituted Benzhydryl Amines That Function As Histone Demethylase Inhibitors, Wen Zhang, Vitaliy M. Sviripa, Yanqi Xie, Tianxin Yu, Meghan G. Haney, Jessica S. Blackburn, Charles A. Adeniran, Chang-Guo Zhan, David S. Watt, Chunming Liu Dec 2020

Epigenetic Regulation Of Wnt Signaling By Carboxamide-Substituted Benzhydryl Amines That Function As Histone Demethylase Inhibitors, Wen Zhang, Vitaliy M. Sviripa, Yanqi Xie, Tianxin Yu, Meghan G. Haney, Jessica S. Blackburn, Charles A. Adeniran, Chang-Guo Zhan, David S. Watt, Chunming Liu

Molecular and Cellular Biochemistry Faculty Publications

Aberrant activation of Wnt signaling triggered by mutations in either Adenomatous Polyposis Coli (APC) or CTNNB1 (β-catenin) is a hallmark of colorectal cancers (CRC). As part of a program to develop epigenetic regulators for cancer therapy, we developed carboxamide-substituted benzhydryl amines (CBAs) bearing either aryl or heteroaryl groups that selectively targeted histone lysine demethylases (KDMs) and functioned as inhibitors of the Wnt pathway. A biotinylated variant of N-((5-chloro-8-hydroxyquinolin-7-yl) (4-(diethylamino)phenyl)-methyl)butyramide (CBA-1) identified KDM3A as a binding partner. KDM3A is a Jumonji (JmjC) domain-containing demethylase that is significantly upregulated in CRC. KDM3A regulates the demethylation of histone H3's lysine …


Spatial Profiling Of Gangliosides In Mouse Brain By Mass Spectrometry Imaging, Douglas A. Andres, Lyndsay E. A. Young, Matthew S. Gentry, Ramon C. Sun Dec 2020

Spatial Profiling Of Gangliosides In Mouse Brain By Mass Spectrometry Imaging, Douglas A. Andres, Lyndsay E. A. Young, Matthew S. Gentry, Ramon C. Sun

Molecular and Cellular Biochemistry Faculty Publications

No abstract provided.


Distribution Of Microglial Phenotypes As A Function Of Age And Alzheimer's Disease Neuropathology In The Brains Of People With Down Syndrome, Alessandra C. Martini, Alex M. Helman, Katie L. Mccarty, Ira T. Lott, Eric Doran, Frederick A. Schmitt, Elizabeth Head Oct 2020

Distribution Of Microglial Phenotypes As A Function Of Age And Alzheimer's Disease Neuropathology In The Brains Of People With Down Syndrome, Alessandra C. Martini, Alex M. Helman, Katie L. Mccarty, Ira T. Lott, Eric Doran, Frederick A. Schmitt, Elizabeth Head

Sanders-Brown Center on Aging Faculty Publications

Introduction: Microglial cells play an important role in the development of Alzheimer's disease (AD). People with Down syndrome (DS) inevitably develop AD neuropathology (DSAD) by 40 years of age. We characterized the distribution of different microglial phenotypes in the brains of people with DS and DSAD.

Methods: Autopsy tissue from the posterior cingulate cortex (PCC) from people with DS, DSAD, and neurotypical controls was immunostained with the microglial marker Iba1 to assess five microglia morphological types.

Results: Individuals with DS have more hypertrophic microglial cells in their white matter. In the gray matter, individuals with DSAD had significantly fewer ramified …


Tdp-43 Mediated Blood-Brain Barrier Permeability And Leukocyte Infiltration Promote Neurodegeneration In A Low-Grade Systemic Inflammation Mouse Model, Frank Zamudio, Anjanet R. Loon, Shayna Smeltzer, Khawla Benyamine, Nanda K. Navalpur Shanmugam, Nicholas J. F. Stewart, Daniel C. Lee, Kevin Nash, Maj-Linda B. Selenica Sep 2020

Tdp-43 Mediated Blood-Brain Barrier Permeability And Leukocyte Infiltration Promote Neurodegeneration In A Low-Grade Systemic Inflammation Mouse Model, Frank Zamudio, Anjanet R. Loon, Shayna Smeltzer, Khawla Benyamine, Nanda K. Navalpur Shanmugam, Nicholas J. F. Stewart, Daniel C. Lee, Kevin Nash, Maj-Linda B. Selenica

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Neuronal cytoplasmic inclusions containing TAR DNA-binding protein 43 (TDP-43) are a neuropathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's Disease (AD). Emerging evidence also indicates that systemic inflammation may be a contributor to the pathology progression of these neurodegenerative diseases.

METHODS: To investigate the role of systemic inflammation in the progression of neuronal TDP-43 pathology, AAV9 particles driven by the UCHL1 promoter were delivered to the frontal cortex of wild-type aged mice via intracranial injections to overexpress TDP-43 or green fluorescent protein (GFP) in corticospinal motor neurons. Animals were then subjected …


Atom Identifiers Generated By A Neighborhood-Specific Graph Coloring Method Enable Compound Harmonization Across Metabolic Databases, Huan Jin, Joshua M. Mitchell, Hunter N. B. Moseley Sep 2020

Atom Identifiers Generated By A Neighborhood-Specific Graph Coloring Method Enable Compound Harmonization Across Metabolic Databases, Huan Jin, Joshua M. Mitchell, Hunter N. B. Moseley

Molecular and Cellular Biochemistry Faculty Publications

Metabolic flux analysis requires both a reliable metabolic model and reliable metabolic profiles in characterizing metabolic reprogramming. Advances in analytic methodologies enable production of high-quality metabolomics datasets capturing isotopic flux. However, useful metabolic models can be difficult to derive due to the lack of relatively complete atom-resolved metabolic networks for a variety of organisms, including human. Here, we developed a neighborhood-specific graph coloring method that creates unique identifiers for each atom in a compound facilitating construction of an atom-resolved metabolic network. What is more, this method is guaranteed to generate the same identifier for symmetric atoms, enabling automatic identification of …


Viral Membrane Fusion And The Transmembrane Domain, Chelsea T. Barrett, Rebecca Ellis Dutch Jun 2020

Viral Membrane Fusion And The Transmembrane Domain, Chelsea T. Barrett, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past …


Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) Drives Migration And Progression Of T-Cell Acute Lymphoblastic Leukemia In Vitro And In Vivo, Min Wei, Meghan G. Haney, Dylan R. Rivas, Jessica S. Blackburn Jan 2020

Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) Drives Migration And Progression Of T-Cell Acute Lymphoblastic Leukemia In Vitro And In Vivo, Min Wei, Meghan G. Haney, Dylan R. Rivas, Jessica S. Blackburn

Molecular and Cellular Biochemistry Faculty Publications

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer. There are no immunotherapies and few molecularly targeted therapeutics available for treatment of this malignancy. The identification and characterization of genes and pathways that drive T-ALL progression are critical for the development of new therapies for T-ALL. Here, we determined that the protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3) plays a critical role in T-ALL initiation and progression by promoting leukemia cell migration. PRL-3 is highly expressed in patient T-ALL samples at both the mRNA and protein levels compared to normal lymphocytes. Knock-down of PRL-3 expression using short-hairpin RNA (shRNA) …


Advances In Gene Ontology Utilization Improve Statistical Power Of Annotation Enrichment, Eugene Waverly Hinderer Iii, Robert M. Flight, Rashmi Dubey, James N. Macleod, Hunter N. B. Moseley Aug 2019

Advances In Gene Ontology Utilization Improve Statistical Power Of Annotation Enrichment, Eugene Waverly Hinderer Iii, Robert M. Flight, Rashmi Dubey, James N. Macleod, Hunter N. B. Moseley

Maxwell H. Gluck Equine Research Center Faculty Publications

Gene-annotation enrichment is a common method for utilizing ontology-based annotations in gene and gene-product centric knowledgebases. Effective utilization of these annotations requires inferring semantic linkages by tracing paths through edges in the ontological graph, referred to as relations. However, some relations are semantically problematic with respect to scope, necessitating their omission or modification lest erroneous term mappings occur. To address these issues, we created the Gene Ontology Categorization Suite, or GOcats—a novel tool that organizes the Gene Ontology into subgraphs representing user-defined concepts, while ensuring that all appropriate relations are congruent with respect to scoping semantics. Here, we demonstrate the …


Targeting Pathogenic Lafora Bodies In Lafora Disease Using An Antibody-Enzyme Fusion, M. Kathryn Brewer, Annette M. Uittenbogaard, Grant L. Austin, Dyann M. Segvich, Anna Depaoli-Roach, Peter J. Roach, John J. Mccarthy, Zoe R. Simmons, Jason A. Brandon, Zhengqiu Zhou, Jill Zeller, Lyndsay E. A. Young, Ramon C. Sun, James R. Pauly, Nadine M. Aziz, Bradley L. Hodges, Tracy R. Mcknight, Dustin D. Armstrong, Matthew S. Gentry Jul 2019

Targeting Pathogenic Lafora Bodies In Lafora Disease Using An Antibody-Enzyme Fusion, M. Kathryn Brewer, Annette M. Uittenbogaard, Grant L. Austin, Dyann M. Segvich, Anna Depaoli-Roach, Peter J. Roach, John J. Mccarthy, Zoe R. Simmons, Jason A. Brandon, Zhengqiu Zhou, Jill Zeller, Lyndsay E. A. Young, Ramon C. Sun, James R. Pauly, Nadine M. Aziz, Bradley L. Hodges, Tracy R. Mcknight, Dustin D. Armstrong, Matthew S. Gentry

Molecular and Cellular Biochemistry Faculty Publications

Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB …


One Amino Acid Change Of Angiotensin Ii Diminishes Its Effects On Abdominal Aortic Aneurysm, Ya Wang, Yinchuan Xu, Congqing Wu, Hongguang Xia, Yingchao Wang, Jinliang Nan, Jinghai Chen, Hong Yu, Wei Zhu, Peng Shi, Alan Daugherty, Hong S. Lu, Jian'an Wang May 2019

One Amino Acid Change Of Angiotensin Ii Diminishes Its Effects On Abdominal Aortic Aneurysm, Ya Wang, Yinchuan Xu, Congqing Wu, Hongguang Xia, Yingchao Wang, Jinliang Nan, Jinghai Chen, Hong Yu, Wei Zhu, Peng Shi, Alan Daugherty, Hong S. Lu, Jian'an Wang

Saha Cardiovascular Research Center Faculty Publications

Angiotensin (Ang) A is formed by the decarboxylation of the N terminal residue of AngII. The present study determined whether this one amino acid change impacted effects of AngII on abdominal aortic aneurysm (AAA) formation in mice. Computational analyses implicated that AngA had comparable binding affinity to both AngII type 1 and 2 receptors as AngII. To compare effects of these two octapeptides in vivo, male low-density lipoprotein receptor (Ldlr) or apolipoprotein E (Apoe) deficient mice were infused with either AngII or AngA (1 μg/kg/min) for 4 weeks. While AngII infusion induced AAA consistently in …


Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A And Promotes Breast Cancer Stem-Like Cells, Bai Cui, Yuanyuan Luo, Pengfei Tian, Fei Peng, Jinxin Lu, Yongliang Yang, Qitong Su, Bing Liu, Jiachuan Yu, Xi Luo, Liu Yin, Wei Cheng, Fan An, Bin He, Dapeng Liang, Sijin Wu, Peng Chu, Luyao Song, Xinyu Liu, Huandong Luo, Binhua P. Zhou Mar 2019

Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A And Promotes Breast Cancer Stem-Like Cells, Bai Cui, Yuanyuan Luo, Pengfei Tian, Fei Peng, Jinxin Lu, Yongliang Yang, Qitong Su, Bing Liu, Jiachuan Yu, Xi Luo, Liu Yin, Wei Cheng, Fan An, Bin He, Dapeng Liang, Sijin Wu, Peng Chu, Luyao Song, Xinyu Liu, Huandong Luo, Binhua P. Zhou

Molecular and Cellular Biochemistry Faculty Publications

Chronic stress triggers activation of the sympathetic nervous system and drives malignancy. Using an immunodeficient murine system, we showed that chronic stress–induced epinephrine promoted breast cancer stem-like properties via lactate dehydrogenase A–dependent (LDHA-dependent) metabolic rewiring. Chronic stress–induced epinephrine activated LDHA to generate lactate, and the adjusted pH directed USP28-mediated deubiquitination and stabilization of MYC. The SLUG promoter was then activated by MYC, which promoted development of breast cancer stem-like traits. Using a drug screen that targeted LDHA, we found that a chronic stress–induced cancer stem-like phenotype could be reversed by vitamin C. These findings demonstrated the critical importance of psychological …


Autophagic Flux Modulation By Wnt/Β-Catenin Pathway Inhibition In Hepatocellular Carcinoma, Lilia Turcios, Heather E. Chacon, Catherine Garcia, Pedro Eman, Virgilius Cornea, Jieyun Jiang, Brett T. Spear, Chunming Liu, David S. Watt, Francesc Marti, Roberto Gedaly Feb 2019

Autophagic Flux Modulation By Wnt/Β-Catenin Pathway Inhibition In Hepatocellular Carcinoma, Lilia Turcios, Heather E. Chacon, Catherine Garcia, Pedro Eman, Virgilius Cornea, Jieyun Jiang, Brett T. Spear, Chunming Liu, David S. Watt, Francesc Marti, Roberto Gedaly

Surgery Faculty Publications

Autophagy targets cellular components for lysosomal-dependent degradation in which the products of degradation may be recycled for protein synthesis and utilized for energy production. Autophagy also plays a critical role in cell homeostasis and the regulation of many physiological and pathological processes and prompts this investigation of new agents to effect abnormal autophagy in hepatocellular carcinoma (HCC). 2,5-Dichloro-N-(2-methyl-4-nitrophenyl) benzenesulfonamide (FH535) is a synthetic inhibitor of the Wnt/β-catenin pathway that exhibits anti-proliferative and anti-angiogenic effects on different types of cancer cells. The combination of FH535 with sorafenib promotes a synergistic inhibition of HCC and liver cancer stem cell proliferation, …


Clinical Features, Survival And Prognostic Factors Of Glycogen-Rich Clear Cell Carcinoma (Grcc) Of The Breast In The U.S. Population, Zhengqiu Zhou, Connor J. Kinslow, Hanina Hibshoosh, Hua Guo, Simon K. Cheng, Chunyan He, Matthew S. Gentry, Ramon C. Sun Feb 2019

Clinical Features, Survival And Prognostic Factors Of Glycogen-Rich Clear Cell Carcinoma (Grcc) Of The Breast In The U.S. Population, Zhengqiu Zhou, Connor J. Kinslow, Hanina Hibshoosh, Hua Guo, Simon K. Cheng, Chunyan He, Matthew S. Gentry, Ramon C. Sun

Molecular and Cellular Biochemistry Faculty Publications

The World Health Organization (WHO) defines glycogen-rich clear cell carcinoma (GRCC) of the breast as a carcinoma with glycogen accumulation in more than 90% of its tumor cells. Due to the rarity of this disease, its reported survival and clinical associations have been inconsistent due to reliance on case reports and limited case series. As a result, the prognostic implication of this cancer subtype remains unclear. Using the U.S. Surveillance, Epidemiology, and End Results (SEER) program database, we compared the incidence, demographics and prognostic factors of 155 cases of GRCC of the breast to 1,251,584 cases of other (non-GRCC) breast …


Itch Nuclear Translocation And H1.2 Polyubiquitination Negatively Regulate The Dna Damage Response, Lufen Chang, Lei Shen, Hu Zhou, Jing Gao, Hangyi Pan, Li Zheng, Brian Armstrong, Yang Peng, Guang Peng, Binhua P. Zhou, Steven T. Rosen, Binghui Shen Jan 2019

Itch Nuclear Translocation And H1.2 Polyubiquitination Negatively Regulate The Dna Damage Response, Lufen Chang, Lei Shen, Hu Zhou, Jing Gao, Hangyi Pan, Li Zheng, Brian Armstrong, Yang Peng, Guang Peng, Binhua P. Zhou, Steven T. Rosen, Binghui Shen

Molecular and Cellular Biochemistry Faculty Publications

The downregulation of the DNA damage response (DDR) enables aggressive tumors to achieve uncontrolled proliferation against replication stress, but the mechanisms underlying this process in tumors are relatively complex. Here, we demonstrate a mechanism through which a distinct E3 ubiquitin ligase, ITCH, modulates DDR machinery in triple-negative breast cancer (TNBC). We found that expression of a nuclear form of ITCH was significantly increased in human TNBC cell lines and tumor specimens. Phosphorylation of ITCH at Ser257 by AKT led to the nuclear localization of ITCH and ubiquitination of H1.2. The ITCH-mediated polyubiquitination of H1.2 suppressed RNF8/RNF168-dependent formation of 53BP1 foci, …


Antisense Oligonucleotides Targeting Angiotensinogen: Insights From Animal Studies, Chia-Hua Wu, Ya Wang, Murong Ma, Adam E. Mullick, Rosanne M. Crooke, Mark J. Graham, Alan Daugherty, Hong S. Lu Jan 2019

Antisense Oligonucleotides Targeting Angiotensinogen: Insights From Animal Studies, Chia-Hua Wu, Ya Wang, Murong Ma, Adam E. Mullick, Rosanne M. Crooke, Mark J. Graham, Alan Daugherty, Hong S. Lu

Saha Cardiovascular Research Center Faculty Publications

Angiotensinogen (AGT) is the unique substrate of all angiotensin peptides. We review the recent preclinical research of AGT antisense oligonucleotides (ASOs), a rapidly evolving therapeutic approach. The scope of the research findings not only opens doors for potentially new therapeutics of hypertension and many other diseases, but also provides insights into understanding critical physiological and pathophysiological roles mediated by AGT.


Canvass: A Crowd-Sourced, Natural-Product Screening Library For Exploring Biological Space, Sara E. Kearney, Gergely ZahoráNszky-KőHalmi, Kyle R. Brimacombe, Mark J. Henderson, Caitlin Lynch, Tongan Zhao, Kanny K. Wan, Zina Itkin, Christopher Dillon, Min Shen, Dorian M. Cheff, Tobie D. Lee, Danielle Bougie, Ken Cheng, Nathan P. Coussens, Dorjbal Dorjsuren, Richard T. Eastman, Ruili Huang, Michael J. Iannotti, Surendra Karavadhi, Carleen Klumpp-Thomas, Jacob S. Roth, Srilatha Sakamuru, Wei Sun, Steven A. Titus, Adam Yasgar, Ya-Qin Zhang, Jinghua Zhao, Rodrigo B. Andrade, M. Kevin Brown, Robert B. Grossman Dec 2018

Canvass: A Crowd-Sourced, Natural-Product Screening Library For Exploring Biological Space, Sara E. Kearney, Gergely ZahoráNszky-KőHalmi, Kyle R. Brimacombe, Mark J. Henderson, Caitlin Lynch, Tongan Zhao, Kanny K. Wan, Zina Itkin, Christopher Dillon, Min Shen, Dorian M. Cheff, Tobie D. Lee, Danielle Bougie, Ken Cheng, Nathan P. Coussens, Dorjbal Dorjsuren, Richard T. Eastman, Ruili Huang, Michael J. Iannotti, Surendra Karavadhi, Carleen Klumpp-Thomas, Jacob S. Roth, Srilatha Sakamuru, Wei Sun, Steven A. Titus, Adam Yasgar, Ya-Qin Zhang, Jinghua Zhao, Rodrigo B. Andrade, M. Kevin Brown, Robert B. Grossman

Chemistry Faculty Publications

Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The …


Targeting The Brd4/Foxo3a/Cdk6 Axis Sensitizes Akt Inhibition In Luminal Breast Cancer, Jingyi Liu, Weijie Guo, Zhibing Duan, Lei Zeng, Yadi Wu, Yule Chen, Fang Tai, Yifan Wang, Yiwei Lin, Qiang Zhang, Yanling He, Jiong Deng, Rachel L. Stewart, Chi Wang, Pengnian Charles Lin, Saghi Ghaffari, B. Mark Evers, Suling Liu, Ming-Ming Zhou, Binhua P. Zhou, Jian Shi Dec 2018

Targeting The Brd4/Foxo3a/Cdk6 Axis Sensitizes Akt Inhibition In Luminal Breast Cancer, Jingyi Liu, Weijie Guo, Zhibing Duan, Lei Zeng, Yadi Wu, Yule Chen, Fang Tai, Yifan Wang, Yiwei Lin, Qiang Zhang, Yanling He, Jiong Deng, Rachel L. Stewart, Chi Wang, Pengnian Charles Lin, Saghi Ghaffari, B. Mark Evers, Suling Liu, Ming-Ming Zhou, Binhua P. Zhou, Jian Shi

Molecular and Cellular Biochemistry Faculty Publications

BRD4 assembles transcriptional machinery at gene super-enhancer regions and governs the expression of genes that are critical for cancer progression. However, it remains unclear whether BRD4-mediated gene transcription is required for tumor cells to develop drug resistance. Our data show that prolonged treatment of luminal breast cancer cells with AKT inhibitors induces FOXO3a dephosphorylation, nuclear translocation, and disrupts its association with SirT6, eventually leading to FOXO3a acetylation as well as BRD4 recognition. Acetylated FOXO3a recognizes the BD2 domain of BRD4, recruits the BRD4/RNAPII complex to the CDK6 gene promoter, and induces its transcription. Pharmacological inhibition of either BRD4/FOXO3a association or …


Mitochondrial Metabolism In Major Neurological Diseases, Zhengqiu Zhou, Grant L. Austin, Lyndsay E. A. Young, Lance A. Johnson, Ramon Sun Nov 2018

Mitochondrial Metabolism In Major Neurological Diseases, Zhengqiu Zhou, Grant L. Austin, Lyndsay E. A. Young, Lance A. Johnson, Ramon Sun

Molecular and Cellular Biochemistry Faculty Publications

Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell’s ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation–functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly …