Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Metabolic Foundations Of Exercise-Induced Cardiac Growth., Kyle Fulghum Dec 2022

Metabolic Foundations Of Exercise-Induced Cardiac Growth., Kyle Fulghum

Electronic Theses and Dissertations

Regular aerobic exercise promotes physiological cardiac growth, which is an adaptive response thought to enable the heart to meet higher physical demands. Cardiac growth involves coordination of catabolic and anabolic activities to support ATP generation, macromolecule biosynthesis, and myocyte hypertrophy. Although previous studies suggest that exercise-induced reductions in cardiac glycolysis are critical for physiological myocyte hypertrophy, it remains unclear how exercise influences the many interlinked pathways of metabolism that support adaptive remodeling of the heart. In this thesis project, we tested the general hypothesis that aerobic exercise promotes physiological cardiac growth by coordinating myocardial metabolism to promote glucose-supported anabolic pathway …


Cannabinoids And Retinal Fibrotic Disorders., Lucy June Sloan May 2022

Cannabinoids And Retinal Fibrotic Disorders., Lucy June Sloan

Electronic Theses and Dissertations

Retinal fibrosis is detrimental to vision. Retinal pigment epithelial (RPE) cells contribute to several retinal fibrotic diseases. Upon exposure to TGF-β, a key fibrotic cytokine, RPE cells trans-differentiate to myofibroblasts marked by the integration of α-SMA fibers into F-actin stress fibers, which confer strong contractility. Myofibroblasts produce and contract the collagen-rich fibrotic scar and disrupt retinal architecture. In this study, we investigated the in vitro effects of the putative endocannabinoid compound N-oleoyl dopamine (OLDA) on TGF-β2 induced porcine RPE cell contraction and α-SMA expression. Using an in vitro collagen matrix contraction assay, we found that OLDA inhibited TGF-β2 induced contraction …


Organellar Zn2+ Homeostasis And The Role Of Trpml Channels In Neuronal Lysosome Physiology And Axonal Transport, Taylor Franklin Minckley Jan 2022

Organellar Zn2+ Homeostasis And The Role Of Trpml Channels In Neuronal Lysosome Physiology And Axonal Transport, Taylor Franklin Minckley

Electronic Theses and Dissertations

Zinc (Zn2+) is crucial for proper cellular function, and as such it is important to measure and track Zn2+ dynamics in living cells. Fluorescent sensors have been used to estimate Zn2+ content of subcellular compartments, but little is known about endolysosomal Zn2+ homeostasis. Similarly, although numerous sensors have been reported, it is unclear whether and how Zn2+ can be released from intracellular compartments into the cytosol due to a lack of probes that can detect physiological dynamics of cytosolic Zn2+. My dissertation started with comparing and characterizing different Zn2+ sensors including the …


Antioxidant Biomarkers And Nutraceutical Therapeutics In Neurodegeneration And Neurotrauma, Lilia A. Koza Jan 2022

Antioxidant Biomarkers And Nutraceutical Therapeutics In Neurodegeneration And Neurotrauma, Lilia A. Koza

Electronic Theses and Dissertations

Mild traumatic brain injury (mTBI), yielding a Glascow Coma Scale of 13-15, is the most commonly occurring severity of TBI. Pathology from mTBI consists of blood brain barrier disruption, neuroinflammation, oxidative stress, excitotoxicity, mitochondrial dysfunction, protein aggregation, axonal degeneration, and resulting neuronal death. These processes deplete the body’s endogenous antioxidant system. We report a retrospective analysis of antioxidant blood biomarkers in patients with a history of mTBI from a local sports medicine clinic, Resilience Code. We found persistent sex-specific antioxidant depletions in mTBI patients associated with worsened symptomology.

Certain populations, such as athletes, are at high risk for repetitive mTBI …