Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Mechanotransduction Signaling In Podocytes From Fluid Flow Shear Stress., Tarak Srivastava, Hongying Dai, Daniel P. Heruth, Uri S. Alon, Robert E. Garola, Jianping Zhou, R Scott Duncan, Ashraf El-Meanawy, Ellen T. Mccarthy, Ram Sharma, Mark L. Johnson, Virginia J. Savin, Mukut Sharma Jan 2018

Mechanotransduction Signaling In Podocytes From Fluid Flow Shear Stress., Tarak Srivastava, Hongying Dai, Daniel P. Heruth, Uri S. Alon, Robert E. Garola, Jianping Zhou, R Scott Duncan, Ashraf El-Meanawy, Ellen T. Mccarthy, Ram Sharma, Mark L. Johnson, Virginia J. Savin, Mukut Sharma

Manuscripts, Articles, Book Chapters and Other Papers

Recently, we and others have found that hyperfiltration-associated increase in biomechanical forces, namely, tensile stress and fluid flow shear stress (FFSS), can directly and distinctly alter podocyte structure and function. The ultrafiltrate flow over the major processes and cell body generates FFSS to podocytes. Our previous work suggests that the cyclooxygenase-2 (COX-2)-PGE2-PGE2 receptor 2 (EP2) axis plays an important role in mechanoperception of FFSS in podocytes. To address mechanotransduction of the perceived stimulus through EP2, cultured podocytes were exposed to FFSS (2 dyn/cm2) for 2 h. Total RNA from cells at the end of FFSS treatment, 2-h post-FFSS, and 24-h …


Effect Of Hemiepiphysiodesis On The Growth Plate: The Histopathological Changes And Mechanism Exploration Of Recurrence In Mini Pig Model., Jing Ding, Jin He, Zhi-Qiang Zhang, Zhen-Kai Wu, Fang-Chun Jin Jan 2018

Effect Of Hemiepiphysiodesis On The Growth Plate: The Histopathological Changes And Mechanism Exploration Of Recurrence In Mini Pig Model., Jing Ding, Jin He, Zhi-Qiang Zhang, Zhen-Kai Wu, Fang-Chun Jin

Manuscripts, Articles, Book Chapters and Other Papers

Purpose: Hemiepiphysiodesis has been widely used to correct angular deformity of long bone in immature patients. However, there is a limited knowledge about the biomechanical effect of this technique on the histopathological changes of the growth plate and the mechanism of recurrence of malformation after implant removal. We aimed to evaluate the biomechanical effect of hemiepiphysiodesis on the histopathological changes of the growth plate and the mechanism of recurrence of malformation after implant removal in Bama miniature pigs, and to explore the role of asymmetric stress during this procedure.

Methods: Eight 3-month-old male Bama miniature pigs sustained surgeries on the …


Hyperfiltration-Associated Biomechanical Forces In Glomerular Injury And Response: Potential Role For Eicosanoids., Mukut Sharma, Ram Sharma, Ellen T. Mccarthy, Virginia J. Savin, Tarak Srivastava Sep 2017

Hyperfiltration-Associated Biomechanical Forces In Glomerular Injury And Response: Potential Role For Eicosanoids., Mukut Sharma, Ram Sharma, Ellen T. Mccarthy, Virginia J. Savin, Tarak Srivastava

Manuscripts, Articles, Book Chapters and Other Papers

Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a …