Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Investigating The Complexity Of Respiratory Patterns During The Laryngeal Chemoreflex, Andrei Dragomir, Yasemin Akay, Aidan K. Curran, Metin Akay Jun 2008

Investigating The Complexity Of Respiratory Patterns During The Laryngeal Chemoreflex, Andrei Dragomir, Yasemin Akay, Aidan K. Curran, Metin Akay

Dartmouth Scholarship

The laryngeal chemoreflex exists in infants as a primary sensory mechanism for defending the airway from the aspiration of liquids. Previous studies have hypothesized that prolonged apnea associated with this reflex may be life threatening and might be a cause of sudden infant death syndrome. In this study we quantified the output of the respiratory neural network, the diaphragm EMG signal, during the laryngeal chemoreflex and eupnea in early postnatal (3–10 days) piglets. We tested the hypothesis that diaphragm EMG activity corresponding to reflex-related events involved in clearance (restorative) mechanisms such as cough and swallow exhibit lower complexity, suggesting that …


Pioglitazone Inhibition Of Lipopolysaccharide-Induced Nitric Oxide Synthase Is Associated With Altered Activity Of P38 Map Kinase And Pi3k/Akt, Bin Xing, Tao Xin, Randy Lee Hunter, Guoying Bing Jan 2008

Pioglitazone Inhibition Of Lipopolysaccharide-Induced Nitric Oxide Synthase Is Associated With Altered Activity Of P38 Map Kinase And Pi3k/Akt, Bin Xing, Tao Xin, Randy Lee Hunter, Guoying Bing

Neuroscience Faculty Publications

BACKGROUND: Previous studies have suggested that peroxisome proliferator activated receptor-gamma (PPAR-gamma)-mediated neuroprotection involves inhibition of microglial activation and decreased expression and activity of inducible nitric oxide synthase (iNOS); however, the underlying molecular mechanisms have not yet been well established. In the present study we explored: (1) the effect of the PPAR-gamma agonist pioglitazone on lipopolysaccharide (LPS)-induced iNOS activity and nitric oxide (NO) generation by microglia; (2) the differential role of p38 mitogen-activated protein kinase (p38 MAPK), c-Jun NH(2)-terminal kinase (JNK), and phosphoinositide 3-kinase (PI3K) on LPS-induced NO generation; and (3) the regulation of p38 MAPK, JNK, and PI3K by pioglitazone. …