Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Analytical, Diagnostic and Therapeutic Techniques and Equipment

Series

Machine learning

Institution
Publication Year
Publication

Articles 1 - 25 of 25

Full-Text Articles in Medicine and Health Sciences

Leveraging Ai And Machine Learning To Develop And Evaluate A Contextualized User-Friendly Cough Audio Classifier For Detecting Respiratory Diseases: Protocol For A Diagnostic Study In Rural Tanzania, Kahabi Isangula, Rogers John Haule Apr 2024

Leveraging Ai And Machine Learning To Develop And Evaluate A Contextualized User-Friendly Cough Audio Classifier For Detecting Respiratory Diseases: Protocol For A Diagnostic Study In Rural Tanzania, Kahabi Isangula, Rogers John Haule

School of Nursing & Midwifery, East Africa

Background:

Respiratory diseases, including active tuberculosis (TB), asthma, and chronic obstructive pulmonary disease (COPD), constitute substantial global health challenges, necessitating timely and accurate diagnosis for effective treatment and management.

Objective:

This research seeks to develop and evaluate a noninvasive user-friendly artificial intelligence (AI)–powered cough audio classifier for detecting these respiratory conditions in rural Tanzania.

Methods:

This is a nonexperimental cross-sectional research with the primary objective of collection and analysis of cough sounds from patients with active TB, asthma, and COPD in outpatient clinics to generate and evaluate a noninvasive cough audio classifier. Specialized cough sound recording devices, designed to be …


Correlation Enhanced Distribution Adaptation For Prediction Of Fall Risk, Ziqi Guo, Teresa Wu, Thurmon Lockhart, Rahul Soangra, Hyunsoo Yoon Feb 2024

Correlation Enhanced Distribution Adaptation For Prediction Of Fall Risk, Ziqi Guo, Teresa Wu, Thurmon Lockhart, Rahul Soangra, Hyunsoo Yoon

Physical Therapy Faculty Articles and Research

With technological advancements in diagnostic imaging, smart sensing, and wearables, a multitude of heterogeneous sources or modalities are available to proactively monitor the health of the elderly. Due to the increasing risks of falls among older adults, an early diagnosis tool is crucial to prevent future falls. However, during the early stage of diagnosis, there is often limited or no labeled data (expert-confirmed diagnostic information) available in the target domain (new cohort) to determine the proper treatment for older adults. Instead, there are multiple related but non-identical domain data with labels from the existing cohort or different institutions. Integrating different …


Predicting The Need For Cardiovascular Surgery: A Comparative Study Of Machine Learning Models, Arman Ghavidel, Pilar Pazos, Rolando Del Aguila Suarez, Alireza Atashi Jan 2024

Predicting The Need For Cardiovascular Surgery: A Comparative Study Of Machine Learning Models, Arman Ghavidel, Pilar Pazos, Rolando Del Aguila Suarez, Alireza Atashi

Engineering Management & Systems Engineering Faculty Publications

This research examines the efficacy of ensemble Machine Learning (ML) models, mainly focusing on Deep Neural Networks (DNNs), in predicting the need for cardiovascular surgery, a critical aspect of clinical decision-making. It addresses key challenges such as class imbalance, which is pivotal in healthcare settings. The research involved a comprehensive comparison and evaluation of the performance of previously published ML methods against a new Deep Learning (DL) model. This comparison utilized a dataset encompassing 50,000 patient records from a large hospital between 2015-2022. The study proposes enhancing the efficacy of these models through feature selection and hyperparameter optimization, employing techniques …


Machine Learning As A Tool For Early Detection: A Focus On Late-Stage Colorectal Cancer Across Socioeconomic Spectrums, Hadiza Galadima, Rexford Anson-Dwamena, Ashley Johnson, Ghalib Bello, Georges Adunlin, James Blando Jan 2024

Machine Learning As A Tool For Early Detection: A Focus On Late-Stage Colorectal Cancer Across Socioeconomic Spectrums, Hadiza Galadima, Rexford Anson-Dwamena, Ashley Johnson, Ghalib Bello, Georges Adunlin, James Blando

Community & Environmental Health Faculty Publications

Purpose: To assess the efficacy of various machine learning (ML) algorithms in predicting late-stage colorectal cancer (CRC) diagnoses against the backdrop of socio-economic and regional healthcare disparities. Methods: An innovative theoretical framework was developed to integrate individual- and census tract-level social determinants of health (SDOH) with sociodemographic factors. A comparative analysis of the ML models was conducted using key performance metrics such as AUC-ROC to evaluate their predictive accuracy. Spatio-temporal analysis was used to identify disparities in late-stage CRC diagnosis probabilities. Results: Gradient boosting emerged as the superior model, with the top predictors for late-stage CRC diagnosis being anatomic site, …


Pca-Clf: A Classifier Of Prostate Cancer Patients Into Patients With Indolent And Aggressive Tumors Using Machine Learning, Yashwanth Karthik Kumar Mamidi, Tarun Karthik Kumar Mamidi, Md Wasi Ul Kabir, Jiande Wu, Md Tamjidul Hoque, Chindo Hicks Sep 2023

Pca-Clf: A Classifier Of Prostate Cancer Patients Into Patients With Indolent And Aggressive Tumors Using Machine Learning, Yashwanth Karthik Kumar Mamidi, Tarun Karthik Kumar Mamidi, Md Wasi Ul Kabir, Jiande Wu, Md Tamjidul Hoque, Chindo Hicks

School of Medicine Faculty Publications

A critical unmet medical need in prostate cancer (PCa) clinical management centers around distinguishing indolent from aggressive tumors. Traditionally, Gleason grading has been utilized for this purpose. However, tumor classification using Gleason Grade 7 is often ambiguous, as the clinical behavior of these tumors follows a variable clinical course. This study aimed to investigate the application of machine learning techniques (ML) to classify patients into indolent and aggressive PCas. We used gene expression data from The Cancer Genome Atlas and compared gene expression levels between indolent and aggressive tumors to identify features for developing and validating a range of ML …


Predicting Survival Of Nsclc Patients Treated With Immune Checkpoint Inhibitors: Impact And Timing Of Immune-Related Adverse Events And Prior Tyrosine Kinase Inhibitor Therapy, Michael R. Sayer, Isa Mambetsariev, Kun-Han Lu, Chi Wah Wong, Ashley Duche, Richard Beuttler, Jeremy Fricke, Rebecca Pharaon, Leonidas Arvanitis, Zahra Eftekhari, Arya Amini, Marianna Koczywas, Erminia Massarelli, Moom Rahman Roosan, Ravi Salgia Feb 2023

Predicting Survival Of Nsclc Patients Treated With Immune Checkpoint Inhibitors: Impact And Timing Of Immune-Related Adverse Events And Prior Tyrosine Kinase Inhibitor Therapy, Michael R. Sayer, Isa Mambetsariev, Kun-Han Lu, Chi Wah Wong, Ashley Duche, Richard Beuttler, Jeremy Fricke, Rebecca Pharaon, Leonidas Arvanitis, Zahra Eftekhari, Arya Amini, Marianna Koczywas, Erminia Massarelli, Moom Rahman Roosan, Ravi Salgia

Pharmacy Faculty Articles and Research

Introduction: Immune checkpoint inhibitors (ICIs) produce a broad spectrum of immune-related adverse events (irAEs) affecting various organ systems. While ICIs are established as a therapeutic option in non-small cell lung cancer (NSCLC) treatment, most patients receiving ICI relapse. Additionally, the role of ICIs on survival in patients receiving prior targeted tyrosine kinase inhibitor (TKI) therapy has not been well-defined.

Objective: To investigate the impact of irAEs, the relative time of occurrence, and prior TKI therapy to predict clinical outcomes in NSCLC patients treated with ICIs.

Methods: A single center retrospective cohort study identified 354 adult patients with NSCLC receiving ICI …


Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical …


Prediction Of Rapid Early Progression And Survival Risk With Pre-Radiation Mri In Who Grade 4 Glioma Patients, Walia Farzana, Mustafa M. Basree, Norou Diawara, Zeina Shboul, Sagel Dubey, Marie M. Lockheart, Mohamed Hamza, Joshua D. Palmer, Khan Iftekharuddin Jan 2023

Prediction Of Rapid Early Progression And Survival Risk With Pre-Radiation Mri In Who Grade 4 Glioma Patients, Walia Farzana, Mustafa M. Basree, Norou Diawara, Zeina Shboul, Sagel Dubey, Marie M. Lockheart, Mohamed Hamza, Joshua D. Palmer, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Rapid early progression (REP) has been defined as increased nodular enhancement at the border of the resection cavity, the appearance of new lesions outside the resection cavity, or increased enhancement of the residual disease after surgery and before radiation. Patients with REP have worse survival compared to patients without REP (non-REP). Therefore, a reliable method for differentiating REP from non-REP is hypothesized to assist in personlized treatment planning. A potential approach is to use the radiomics and fractal texture features extracted from brain tumors to characterize morphological and physiological properties. We propose a random sampling-based ensemble classification model. The proposed …


Heart Disease Prediction Using Stacking Model With Balancing Techniques And Dimensionality Reduction, Ayesha Noor, Nadeem Javaid, Nabil Alrajeh, Babar Mansoor, Ali Khaqan, Safdar Hussain Bouk Jan 2023

Heart Disease Prediction Using Stacking Model With Balancing Techniques And Dimensionality Reduction, Ayesha Noor, Nadeem Javaid, Nabil Alrajeh, Babar Mansoor, Ali Khaqan, Safdar Hussain Bouk

School of Cybersecurity Faculty Publications

Heart disease is a serious worldwide health issue with wide-reaching effects. Since heart disease is one of the leading causes of mortality worldwide, early detection is crucial. Emerging technologies like Machine Learning (ML) are currently being actively used by the biomedical, healthcare, and health prediction industries. PaRSEL, a new stacking model is proposed in this research, that combines four classifiers, Passive Aggressive Classifier (PAC), Ridge Classifier (RC), Stochastic Gradient Descent Classifier (SGDC), and eXtreme Gradient Boosting (XGBoost), at the base layer, and LogitBoost is deployed for the final predictions at the meta layer. The imbalanced and irrelevant features in the …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang Jan 2023

Msdrp: A Deep Learning Model Based On Multisource Data For Predicting Drug Response, Haochen Zhao, Xiaoyu Zhang, Qichang Zhao, Yaohang Li, Jianxin Wang

Computer Science Faculty Publications

Motivation: Cancer heterogeneity drastically affects cancer therapeutic outcomes. Predicting drug response in vitro is expected to help formulate personalized therapy regimens. In recent years, several computational models based on machine learning and deep learning have been proposed to predict drug response in vitro. However, most of these methods capture drug features based on a single drug description (e.g. drug structure), without considering the relationships between drugs and biological entities (e.g. target, diseases, and side effects). Moreover, most of these methods collect features separately for drugs and cell lines but fail to consider the pairwise interactions between drugs and cell …


Artificial Intelligence In The Radiomic Analysis Of Glioblastomas: A Review, Taxonomy, And Perspective, Ming Zhu, Sijia Li, Yu Kuang, Virigina B. Hill, Amy B. Heimberger, Lijie Zhai, Shenjie Zhai Aug 2022

Artificial Intelligence In The Radiomic Analysis Of Glioblastomas: A Review, Taxonomy, And Perspective, Ming Zhu, Sijia Li, Yu Kuang, Virigina B. Hill, Amy B. Heimberger, Lijie Zhai, Shenjie Zhai

Electrical & Computer Engineering Faculty Research

Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications …


A High Precision Machine Learning-Enabled System For Predicting Idiopathic Ventricular Arrhythmia Origins, Jianwei Zheng, Guohua Fu, Daniele Struppa, Islam Abudayyeh, Tahmeed Contractor, Kyle Anderson, Huimin Chu, Cyril Rakovski Mar 2022

A High Precision Machine Learning-Enabled System For Predicting Idiopathic Ventricular Arrhythmia Origins, Jianwei Zheng, Guohua Fu, Daniele Struppa, Islam Abudayyeh, Tahmeed Contractor, Kyle Anderson, Huimin Chu, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

Background: Radiofrequency catheter ablation (CA) is an efficient antiarrhythmic treatment with a class I indication for idiopathic ventricular arrhythmia (IVA), only when drugs are ineffective or have unacceptable side effects. The accurate prediction of the origins of IVA can significantly increase the operation success rate, reduce operation duration and decrease the risk of complications. The present work proposes an artificial intelligence-enabled ECG analysis algorithm to estimate possible origins of idiopathic ventricular arrhythmia at a clinical-grade level accuracy.

Method: A total of 18,612 ECG recordings extracted from 545 patients who underwent successful CA to treat IVA were proportionally sampled into training, …


Unsupervised Machine Learning For Identifying Challenging Behavior Profiles To Explore Cluster-Based Treatment Efficacy In Children With Autism Spectrum Disorder: Retrospective Data Analysis Study, Julie Gardner-Hoag, Marlena N. Novack, Chelsea Parlett-Pelleriti, Elizabeth Stevens, Dennis Dixon, Erik Linstead Jun 2021

Unsupervised Machine Learning For Identifying Challenging Behavior Profiles To Explore Cluster-Based Treatment Efficacy In Children With Autism Spectrum Disorder: Retrospective Data Analysis Study, Julie Gardner-Hoag, Marlena N. Novack, Chelsea Parlett-Pelleriti, Elizabeth Stevens, Dennis Dixon, Erik Linstead

Engineering Faculty Articles and Research

Background: Challenging behaviors are prevalent among individuals with autism spectrum disorder; however, research exploring the impact of challenging behaviors on treatment response is lacking.

Objective: The purpose of this study was to identify types of autism spectrum disorder based on engagement in different challenging behaviors and evaluate differences in treatment response between groups.

Methods: Retrospective data on challenging behaviors and treatment progress for 854 children with autism spectrum disorder were analyzed. Participants were clustered based on 8 observed challenging behaviors using k means, and multiple linear regression was performed to test interactions between skill mastery and treatment …


Deep-Learning-Based Multivariate Pattern Analysis (Dmvpa): A Tutorial And A Toolbox, Karl M. Kuntzelman, Jacob M. Williams, Phui Cheng Lim, Ashtok Samal, Prahalada K. Rao, Matthew R. Johnson Mar 2021

Deep-Learning-Based Multivariate Pattern Analysis (Dmvpa): A Tutorial And A Toolbox, Karl M. Kuntzelman, Jacob M. Williams, Phui Cheng Lim, Ashtok Samal, Prahalada K. Rao, Matthew R. Johnson

Center for Brain, Biology, and Behavior: Faculty and Staff Publications

In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on …


Simultaneous Wound Border Segmentation And Tissue Classification Using A Conditional Generative Adversarial Network, Salih Sarp, Murat Kuzlu, Manisa Pipattanasomporn, Ozgur Guler Jan 2021

Simultaneous Wound Border Segmentation And Tissue Classification Using A Conditional Generative Adversarial Network, Salih Sarp, Murat Kuzlu, Manisa Pipattanasomporn, Ozgur Guler

Engineering Technology Faculty Publications

Generative adversarial network (GAN) applications on medical image synthesis have the potential to assist caregivers in deciding a proper chronic wound treatment plan by understanding the border segmentation and the wound tissue classification visually. This study proposes a hybrid wound border segmentation and tissue classification method utilising conditional GAN, which can mimic real data without expert knowledge. We trained the network on chronic wound datasets with different sizes. The performance of the GAN algorithm is evaluated through the mean squared error, Dice coefficient metrics and visual inspection of generated images. This study also analyses the optimum number of training images …


Adaptive Physics-Based Non-Rigid Registration For Immersive Image-Guided Neuronavigation Systems, Fotis Drakopoulos, Christos Tsolakis, Angelos Angelopoulos, Yixun Liu, Chengjun Yao, Kyriaki Rafailia Kavazidi, Nikolaos Foroglou, Andrey Fedorov, Sarah Frisken, Ron Kikinis, Alexandra Golby, Nikos Chrisochoides Jan 2021

Adaptive Physics-Based Non-Rigid Registration For Immersive Image-Guided Neuronavigation Systems, Fotis Drakopoulos, Christos Tsolakis, Angelos Angelopoulos, Yixun Liu, Chengjun Yao, Kyriaki Rafailia Kavazidi, Nikolaos Foroglou, Andrey Fedorov, Sarah Frisken, Ron Kikinis, Alexandra Golby, Nikos Chrisochoides

Computer Science Faculty Publications

Objective: In image-guided neurosurgery, co-registered preoperative anatomical, functional, and diffusion tensor imaging can be used to facilitate a safe resection of brain tumors in eloquent areas of the brain. However, the brain deforms during surgery, particularly in the presence of tumor resection. Non-Rigid Registration (NRR) of the preoperative image data can be used to create a registered image that captures the deformation in the intraoperative image while maintaining the quality of the preoperative image. Using clinical data, this paper reports the results of a comparison of the accuracy and performance among several non-rigid registration methods for handling brain deformation. A …


Machine Learning Approaches For Fracture Risk Assessment: A Comparative Analysis Of Genomic And Phenotypic Data In 5130 Older Men, Qing Wu, Fatma Nasoz, Jongyun Jung, Bibek Bhattarai, Mira V. Han Jul 2020

Machine Learning Approaches For Fracture Risk Assessment: A Comparative Analysis Of Genomic And Phenotypic Data In 5130 Older Men, Qing Wu, Fatma Nasoz, Jongyun Jung, Bibek Bhattarai, Mira V. Han

Public Health Faculty Publications

The study aims were to develop fracture prediction models by using machine learning approaches and genomic data, as well as to identify the best modeling approach for fracture prediction. The genomic data of Osteoporotic Fractures in Men, cohort Study (n = 5130), were analyzed. After a comprehensive genotype imputation, genetic risk score (GRS) was calculated from 1103 associated Single Nucleotide Polymorphisms for each participant. Data were normalized and split into a training set (80%) and a validation set (20%) for analysis. Random forest, gradient boosting, neural network, and logistic regression were used to develop prediction models for major osteoporotic fractures …


Artificial Intelligence: A New Paradigm In Obstetrics And Gynecology Research And Clinical Practice, Pulwasha Iftikhar, Marcela V. Kuijpers, Azadeh Khayyat, Aqsa Iftikhar, Maribel Degouvia De Sa Feb 2020

Artificial Intelligence: A New Paradigm In Obstetrics And Gynecology Research And Clinical Practice, Pulwasha Iftikhar, Marcela V. Kuijpers, Azadeh Khayyat, Aqsa Iftikhar, Maribel Degouvia De Sa

Publications and Research

Artificial intelligence (AI) is growing exponentially in various fields, including medicine. This paper reviews the pertinent aspects of AI in obstetrics and gynecology (OB/GYN) and how these can be applied to improve patient outcomes and reduce the healthcare costs and workload for clinicians.

Herein, we will address current AI uses in OB/GYN, and the use of AI as a tool to interpret fetal heart rate (FHR) and cardiotocography (CTG) to aid in the detection of preterm labor, pregnancy complications, and review discrepancies in its interpretation between clinicians to reduce maternal and infant morbidity and mortality. AI systems can be used …


Identifying Depression In The National Health And Nutrition Examination Survey Data Using A Deep Learning Algorithm, Jihoon Oh, Kyongsik Yun, Uri Maoz, Tae-Suk Kim, Jeong-Ho Chae Jul 2019

Identifying Depression In The National Health And Nutrition Examination Survey Data Using A Deep Learning Algorithm, Jihoon Oh, Kyongsik Yun, Uri Maoz, Tae-Suk Kim, Jeong-Ho Chae

Psychology Faculty Articles and Research

Background

As depression is the leading cause of disability worldwide, large-scale surveys have been conducted to establish the occurrence and risk factors of depression. However, accurately estimating epidemiological factors leading up to depression has remained challenging. Deep-learning algorithms can be applied to assess the factors leading up to prevalence and clinical manifestations of depression.

Methods

Customized deep-neural-network and machine-learning classifiers were assessed using survey data from 19,725 participants from the NHANES database (from 1999 through 2014) and 4949 from the South Korea NHANES (K-NHANES) database in 2014.

Results

A deep-learning algorithm showed area under the receiver operating characteristic curve (AUCs) …


Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre May 2019

Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre

Honors Scholar Theses

Abnormal ocular motility is a common manifestation of many underlying pathologies particularly those that are neurological. Dynamics of saccades, when the eye rapidly changes its point of fixation, have been characterized for many neurological disorders including concussions, traumatic brain injuries (TBI), and Parkinson’s disease. However, widespread saccade analysis for diagnostic and research purposes requires the recognition of certain eye movement parameters. Key information such as velocity and duration must be determined from data based on a wide set of patients’ characteristics that may range in eye shapes and iris, hair and skin pigmentation [36]. Previous work on saccade analysis has …


A Learning-Based Automatic Segmentation And Quantification Method On Left Ventricle In Gated Myocardial Perfusion Spect Imaging: A Feasibility Study, Tonghe Wang, Yang Lei, Haipeng Tang, Zhou He, Richard Castillo, Cheng Wang, Dianfu Li, Kristin Higgins, Tian Liu, Walter J. Curran, Walter J. Curran, Weihua Zhou, Xiaofeng Yang Jan 2019

A Learning-Based Automatic Segmentation And Quantification Method On Left Ventricle In Gated Myocardial Perfusion Spect Imaging: A Feasibility Study, Tonghe Wang, Yang Lei, Haipeng Tang, Zhou He, Richard Castillo, Cheng Wang, Dianfu Li, Kristin Higgins, Tian Liu, Walter J. Curran, Walter J. Curran, Weihua Zhou, Xiaofeng Yang

Faculty Publications

Background: The performance of left ventricular (LV) functional assessment using gated myocardial perfusion SPECT (MPS) relies on the accuracy of segmentation. Current methods require manual adjustments that are tedious and subjective. We propose a novel machine-learning-based method to automatically segment LV myocardium and measure its volume in gated MPS imaging without human intervention.

Methods: We used an end-to-end fully convolutional neural network to segment LV myocardium by delineating its endocardial and epicardial surface. A novel compound loss function, which encourages similarity and penalizes discrepancy between prediction and training dataset, is utilized in training stage to achieve excellent performance. …


Design Of A Distributed Real-Time E-Health Cyber Ecosystem With Collective Actions: Diagnosis, Dynamic Queueing, And Decision Making, Yanlin Zhou May 2018

Design Of A Distributed Real-Time E-Health Cyber Ecosystem With Collective Actions: Diagnosis, Dynamic Queueing, And Decision Making, Yanlin Zhou

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, we develop a framework for E-health Cyber Ecosystems, and look into different involved actors. The three interested parties in the ecosystem including patients, doctors, and healthcare providers are discussed in 3 different phases. In Phase 1, machine-learning based modeling and simulation analysis is performed to remotely predict a patient's risk level of having heart diseases in real time. In Phase 2, an online dynamic queueing model is devised to pair doctors with patients having high risk levels (diagnosed in Phase 1) to confirm the risk, and provide help. In Phase 3, a decision making paradigm is proposed …


Privacy And Accountability In Black-Box Medicine, Roger Allan Ford, W. Nicholson Price Ii Jan 2016

Privacy And Accountability In Black-Box Medicine, Roger Allan Ford, W. Nicholson Price Ii

Law Faculty Scholarship

Black-box medicine—the use of big data and sophisticated machine learning techniques for health-care applications—could be the future of personalized medicine. Black-box medicine promises to make it easier to diagnose rare diseases and conditions, identify the most promising treatments, and allocate scarce resources among different patients. But to succeed, it must overcome two separate, but related, problems: patient privacy and algorithmic accountability. Privacy is a problem because researchers need access to huge amounts of patient health information to generate useful medical predictions. And accountability is a problem because black-box algorithms must be verified by outsiders to ensure they are accurate and …


Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.) Jan 2011

Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.)

Electrical & Computer Engineering Faculty Publications

In a recent study [1], we investigated the feasibility of predicting brain tumor progression based on multiple MRI series and we tested our methods on seven patients' MRI images scanned at three consecutive visits A, B and C. Experimental results showed that it is feasible to predict tumor progression from visit A to visit C using a model trained by the information from visit A to visit B. However, the trained model failed when we tried to predict tumor progression from visit B to visit C, though it is clinically more important. Upon a closer look at the MRI scans …