Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physiology

Tricellulin Deficiency Affects Tight Junction Architecture And Cochlear Hair Cells, Gowri Nayak, Sue I. Lee, Rizwan Yousaf, Stephanie E. Edelmann, Claire Trincot, Christina M. Van Itallie, Ghanshyam P. Sinha, Maria Rafeeq, Sherri M. Jones, Inna A. Belyantseva, James M. Anderson, Andrew Forge, Gregory I. Frolenkov, Saima Riazuddin Aug 2013

Tricellulin Deficiency Affects Tight Junction Architecture And Cochlear Hair Cells, Gowri Nayak, Sue I. Lee, Rizwan Yousaf, Stephanie E. Edelmann, Claire Trincot, Christina M. Van Itallie, Ghanshyam P. Sinha, Maria Rafeeq, Sherri M. Jones, Inna A. Belyantseva, James M. Anderson, Andrew Forge, Gregory I. Frolenkov, Saima Riazuddin

Physiology Faculty Publications

The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while …


Nuclear Localization Of Cpi-17, A Protein Phosphatase-1 Inhibitor Protein, Affects Histone H3 Phosphorylation And Corresponds To Proliferation Of Cancer And Smooth Muscle Cells., Masumi Eto, Jason A Kirkbride, Rishika Chugh, Nana Kofi Karikari, Jee In Kim Apr 2013

Nuclear Localization Of Cpi-17, A Protein Phosphatase-1 Inhibitor Protein, Affects Histone H3 Phosphorylation And Corresponds To Proliferation Of Cancer And Smooth Muscle Cells., Masumi Eto, Jason A Kirkbride, Rishika Chugh, Nana Kofi Karikari, Jee In Kim

Department of Molecular Physiology and Biophysics Faculty Papers

CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear …