Open Access. Powered by Scholars. Published by Universities.®

Immunology and Infectious Disease Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 245

Full-Text Articles in Immunology and Infectious Disease

Characterization Of The Effects Of The Pyrazolopyrimidine Inhibitor Grassofermata (Nav-2729) In The Eukaryotic Pathogen Trypanosoma Brucei, Kristina Marie Parman Dec 2023

Characterization Of The Effects Of The Pyrazolopyrimidine Inhibitor Grassofermata (Nav-2729) In The Eukaryotic Pathogen Trypanosoma Brucei, Kristina Marie Parman

All Dissertations

The protozoan pathogen, Trypanosoma brucei, is the causative agent of sleeping sickness in humans and nagana in livestock in sub-Saharan Africa. T. brucei cycles between tsetse fly and mammalian hosts, and it is adapted to survive in diverse host tissues. Variant Surface Glycoprotein (VSG) plays a key role in immune evasion in the mammalian host. The VSG membrane anchor requires two myristates, 14-carbon saturated fatty acids (FAs) that are scarce in the host. T. brucei can synthesize FAs de novo, but also readily takes up exogenous FAs, despite lacking homologs to fatty acid uptake proteins found in other …


Elucidating The Biomechanics Of Mertk-Mediated Efferocytosis, Brandon Hayato Dickson Jul 2023

Elucidating The Biomechanics Of Mertk-Mediated Efferocytosis, Brandon Hayato Dickson

Electronic Thesis and Dissertation Repository

Macrophages are key mediators of efferocytosis – the phagocytic engulfment and removal of apoptotic cells. During engulfment, the coordinated activity of efferocytic receptors induces the remodeling of the actin cytoskeleton, which facilitates the envelopment of the cell by the plasma membrane. Mer receptor tyrosine kinase (MERTK) is a crucial efferocytic receptor, but its role during actin remodeling is not well understood. Previously, our lab showed that MERTK is an activator of β2 integrins – which are comprised of receptors known to induce the actin polymerization that is required for engulfment. We hypothesized that MERTK is an indirect stimulator of …


Du Undergraduate Showcase: Research, Scholarship, And Creative Works, Caitlyn Aldersea, Justin Bravo, Sam Allen, Anna Block, Connor Block, Emma Buechler, Maria De Los Angeles Bustillos, Arianna Carlson, William Christensen, Olivia Kachulis, Noah Craver, Kate Dillon, Muskan Fatima, Angel Fernandes, Emma Finch, Colleen Cassidy, Amy Fishman, Andrea Francis, Stacia Fritz, Simran Gill, Emma Gries, Rylie Hansen, Shannon Powers, Jacqueline Martinez, Zachary Harker, Ashley Hasty, Mykaela Tanino-Springsteen, Kathleen Hopps, Adelaide Kerenick, Colin Kleckner, Ci Koehring, Elijah Kruger, Braden Krumholz, Maddie Leake, Lyneé Alves, Seraphina Loukas, Yatzari Lozano Vazquez, Haley Maki, Emily Martinez, Sierra Mckinney, Mykaela Tanino-Springsteen, Audrey Mitchell, Kipling Newman, Audrey Ng, Megan Lucyshyn, Andrew Nguyen, Stevie Ostman, Casandra Pearson, Alexandra Penney, Julia Gielczynski, Tyler Ball, Anna Rini, Christina Rorres, Simon Ruland, Helayna Schafer, Emma Sellers, Sarah Schuller, Claire Shaver, Kevin Summers, Isabella Shaw, Madison Sinar, Claudia Pena, Apshara Siwakoti, Carter Sorensen, Madi Sousa, Anna Sparling, Alexandra Revier, Brandon Thierry, Dylan Tyree, Maggie Williams, Lauren Wols May 2023

Du Undergraduate Showcase: Research, Scholarship, And Creative Works, Caitlyn Aldersea, Justin Bravo, Sam Allen, Anna Block, Connor Block, Emma Buechler, Maria De Los Angeles Bustillos, Arianna Carlson, William Christensen, Olivia Kachulis, Noah Craver, Kate Dillon, Muskan Fatima, Angel Fernandes, Emma Finch, Colleen Cassidy, Amy Fishman, Andrea Francis, Stacia Fritz, Simran Gill, Emma Gries, Rylie Hansen, Shannon Powers, Jacqueline Martinez, Zachary Harker, Ashley Hasty, Mykaela Tanino-Springsteen, Kathleen Hopps, Adelaide Kerenick, Colin Kleckner, Ci Koehring, Elijah Kruger, Braden Krumholz, Maddie Leake, Lyneé Alves, Seraphina Loukas, Yatzari Lozano Vazquez, Haley Maki, Emily Martinez, Sierra Mckinney, Mykaela Tanino-Springsteen, Audrey Mitchell, Kipling Newman, Audrey Ng, Megan Lucyshyn, Andrew Nguyen, Stevie Ostman, Casandra Pearson, Alexandra Penney, Julia Gielczynski, Tyler Ball, Anna Rini, Christina Rorres, Simon Ruland, Helayna Schafer, Emma Sellers, Sarah Schuller, Claire Shaver, Kevin Summers, Isabella Shaw, Madison Sinar, Claudia Pena, Apshara Siwakoti, Carter Sorensen, Madi Sousa, Anna Sparling, Alexandra Revier, Brandon Thierry, Dylan Tyree, Maggie Williams, Lauren Wols

DU Undergraduate Research Journal Archive

DU Undergraduate Showcase: Research, Scholarship, and Creative Works


In Silico Binding Of 2-Aminocyclobutanones To Sars-Cov-2 Nsp13 Helicase And Demonstration Of Antiviral Activity, Thahani S. Habeeb Mohammad, Yash Gupta, Cory T. Reidl, Vlad Nicolaescu, Haley Gula, Ravi Durvasula, Prakasha Kempaiah, Daniel P. Becker Ph.D. Mar 2023

In Silico Binding Of 2-Aminocyclobutanones To Sars-Cov-2 Nsp13 Helicase And Demonstration Of Antiviral Activity, Thahani S. Habeeb Mohammad, Yash Gupta, Cory T. Reidl, Vlad Nicolaescu, Haley Gula, Ravi Durvasula, Prakasha Kempaiah, Daniel P. Becker Ph.D.

Chemistry: Faculty Publications and Other Works

The landscape of viral strains and lineages of SARS-CoV-2 keeps changing and is currently dominated by Delta and Omicron variants. Members of the latest Omicron variants, including BA.1, are showing a high level of immune evasion, and Omicron has become a prominent variant circulating globally. In our search for versatile medicinal chemistry scaffolds, we prepared a library of substituted α-aminocyclobutanones from an α-aminocyclobutanone synthon (11). We performed an in silico screen of this actual chemical library as well as other virtual 2-aminocyclobutanone analogs against seven SARS-CoV-2 nonstructural proteins to identify potential drug leads against SARS-CoV-2, and more broadly against coronavirus …


Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover Feb 2023

Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover

Dissertations

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The AD brain is characterized by significant neuronal loss and accumulation of insoluble fibrillar amyloid-β protein (Aβ) plaques and tau protein neurofibrillary tangles in the brain. However, over the last decade, many studies have shown that the neurodegenerative effect of Aβ may in fact be caused by various soluble oligomeric forms as opposed to the insoluble fibrils. Furthermore, the data suggest that a pre-fibrillar aggregated form, termed protofibrils, mediates direct neurotoxicity, and triggers a robust neuroinflammatory response.

Antibodies targeting the various conformation of Aβ are important therapeutic agents to prevent the progression …


Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar Jan 2023

Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Chronic, low-grade systemic inflammation rises in obesity and promotes type 2 diabetes (T2D). Circulating immune cells are key indicators of obesity and T2D pathogenesis. T cells outnumber monocytes, in blood, suggesting that T cells might fuel peripheral inflammation in obesity/T2D. Our lab’s work supports this idea by identification of a Th17 cytokine profile in T2D from T-cell stimulated peripheral blood mononuclear cells. Work described herein further supported this work by demonstrating that T cells dominate peripheral inflammation over monocytes across the spectrum of obesity and glycemic control. Our lab has also recently shown that inflammation changes during prediabetes (preT2D), identified …


Screening Anti-Pd-L2 Peptides As Antitumor Ligands Using Phage Display, Chien Tran Phuoc Dec 2022

Screening Anti-Pd-L2 Peptides As Antitumor Ligands Using Phage Display, Chien Tran Phuoc

Honors Projects

Cancer still remains one of the top leading causes of death in America. Recently, programmed cell death protein 1 (PD-1) blockades have been demonstrated to be highly effective against various types of cancer. By blocking PD-1 from binding with their ligands (PD-L1 and PD-L2), the “off” signal to the immune system is inhibited, hence reinvigorating the immune cells to kill tumor cells. To date, despite PD-L1 and PD-L2 both interacting with PD-1, research efforts have only been focused on developing anti-PD-L1 inhibitors. Therefore, the work of this honor project has focused on finding anti-PD-L2 peptides by phage display, with the …


A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye Dec 2022

A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye

Doctoral Dissertations

T lymphocytes (T cells) play essential roles in the adaptive immune system. Each mature T cell expresses one type of functional T cell receptor (TCR). The TCR recognizes antigens bound to the major histocompatibility complex (MHC) in antigen presenting cells. The resulting stimulation signal crosses the transmembrane domain of TCR and initiates downstream signaling cascades. The human immune system relies on TCRs to recognize a variety of pathogens. Normally, TCR can distinguish the self-antigens from pathogenic antigens. However, dysfunction or aberrant expression of TCRs causes different inflammatory and autoimmune diseases, which afflict millions of people annually (Chapter I). Current treatments …


Prenatal Choline Supplementation During Maternal Obesity Alters Offspring Response To Western Diets, Hunter W. Korsmo Sep 2022

Prenatal Choline Supplementation During Maternal Obesity Alters Offspring Response To Western Diets, Hunter W. Korsmo

Dissertations, Theses, and Capstone Projects

Maternal obesity has led to an increase in adverse offspring developmental outcomes and a greater risk for long-term metabolic diseases. Choline, a semi-essential nutrient, can be incorporated into phosphatidylcholine (PC) as well as sphingomyelin (SM) and donate its labile methyl group for the remethylation of homocysteine after choline is oxidized to betaine. Prenatal choline insufficiency has been related to maternal obesity and metabolic diseases, such as metabolic associated fatty liver disease (MAFLD). Choline may interact with maternal obesity to influence the programming offspring.

Chapter 1 presents an introduction of choline and the various clinical outcomes associated with choline supplementation during …


Eluication Of Lipid Metabolic Pathways In Differentiating Giardia Lamblia Using High Resolution Mass Spectrometry, Cameron Ellis Aug 2022

Eluication Of Lipid Metabolic Pathways In Differentiating Giardia Lamblia Using High Resolution Mass Spectrometry, Cameron Ellis

Open Access Theses & Dissertations

Giardia lamblia is an intestinal protozoan found worldwide, including the U.S. This parasite exists in two morphologic stages - a replicative trophozoite and a relatively dormant yet viable cyst. While exposures of cysts to gastric acid during passage through the human stomach induces excystation, factors in the small intestine, where trophozoites colonize trigger encystation or cyst formation. Transformation into cyst stage is essential for Giardia to survive in the environment for months before infecting new hosts. Because of its small genome size (11.7 Mb), metabolic pathways in Giardia are highly reduced. As far as lipid metabolism is concerned, only limited …


Serpin-Derived Novel Peptide For The Treatment Against Hiv-Induced Inflammation In The Central Nervous System, Yemmy Soler Jun 2022

Serpin-Derived Novel Peptide For The Treatment Against Hiv-Induced Inflammation In The Central Nervous System, Yemmy Soler

FIU Electronic Theses and Dissertations

In the brain, HIV predominantly infects microglia/macrophages and astrocytes to a lesser extent. These cells form virus reservoirs with low levels of infection that are very hard to eradicate. Even though the use of cART increases survival rate in HIV patients, the virus persists as a chronic condition. cART is not able to effectively cross the BBB, control HIV replication, or attenuate inflammation in brain reservoirs. Therefore, the virus still causes neuronal dysfunction, pain-related pathology, and ultimately HAND. In this study, we decided to test the hypothesis that a serpin-derived small peptide, SP16, can serve as an anti-viral, anti-inflammatory, pro-survival, …


Innate Immunity In The Pathobiology And Treatment Of Infectious And Neurodegenerative Diseases, Mai Mostafa May 2022

Innate Immunity In The Pathobiology And Treatment Of Infectious And Neurodegenerative Diseases, Mai Mostafa

Theses & Dissertations

Mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells) are the governors of innate immunity which is the body’s first line of defense against microbial pathogens. They act beneficial or detrimental. They are crucial for an effective non-specific immune response to invading pathogens by engulfing, destroying, then eliciting an adaptive specific immune response. Given their pivotal functions in the host immune defense, studying MP immune responses in disease is paramount important for understanding disease pathobiology and uncovering therapeutic strategies.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the driver of acute respiratory distress syndrome (ARDS) in coronavirus disease 2019 (COVID-19) amongst …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Understanding The Impact Of Human Germline Single-Nucleotide Variants, Samuel Adjei Jan 2022

Understanding The Impact Of Human Germline Single-Nucleotide Variants, Samuel Adjei

Electronic Theses and Dissertations

No abstract provided.


Antibiotic Permeation In Gram-Negative Bacteria And Contribution Of Inflammasome Activation And Pyroptosis In Pathogenesis Of Salmonella Systemic Infection, Ankit Pandeya Jan 2022

Antibiotic Permeation In Gram-Negative Bacteria And Contribution Of Inflammasome Activation And Pyroptosis In Pathogenesis Of Salmonella Systemic Infection, Ankit Pandeya

Theses and Dissertations--Chemistry

Antibiotic resistance is one of the major global issues in the field of public health and medicine. Good antibiotic candidates need to be selectively toxic, inhibit cellular target, and effectively penetrate and accumulate in bacterial cells. The last factor is a formidable barrier in the development of antimicrobials effective in Gram-negative bacteria, due to the presence of two layers of cell envelope. The first half of my thesis focuses on understanding the permeation of small molecules through this formidable cell envelope, distribution inside the cell of Gram-negative bacteria, and design of novel methods to make small molecules effectively cross the …


Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah Nov 2021

Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah

Chemistry: Faculty Publications and Other Works

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2′-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = …


The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo Aug 2021

The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo

Electronic Thesis and Dissertation Repository

Pannexins (PANX1, 2, 3) are a family of channel-forming glycoproteins that mediate intracellular and paracrine signaling. In contrast to PANX2, PANX1 has been extensively investigated in the skin, modulating cell differentiation, wound healing, and melanoma development. PANX1 and PANX2 can co-exist in the same cell and form mixed channels where their glycosylation seems to regulate their intermixing. N-glycosylation and caspase cleavage have been proposed as modulators of the function of PANX1, but their effects on PANX2 are unknown. We explored the PANX2 expression in mouse skin and showed that a Panx2 splice variant (PANX2-202) is continuously expressed throughout aging skin. …


Protein Synthesis Adaptation To The Au-Rich Transcriptome Of Plasmodium Falciparum, Jessey Lee Erath Jan 2021

Protein Synthesis Adaptation To The Au-Rich Transcriptome Of Plasmodium Falciparum, Jessey Lee Erath

Arts & Sciences Electronic Theses and Dissertations

The process of protein synthesis whereby a messenger RNA is decoded into an amino acid chainis conserved among the domains. Fastidious protein synthesis is necessary for organism survival. However, exceptions negatively affecting the mRNA translation cycle – inadvertently or by design – may occur. Polyadenosine tracts are one such motif causing ribosomal stalling and frameshifting in almost all organisms tested thus far; save Plasmodium spp. Thus, with ~60% of their protein-coding genome harboring polyadenosine tracts, the elucidation of such paradigm-breaking adaptations enabling Plasmodium spp. to translate this typically problematic motif without issue is salient from both basic science and clinical …


Sars-Cov-2: An Investigation On Mutagenicity And Its Effects On Infectivity And Mortality, Tyler Elliott Silverwood Jan 2021

Sars-Cov-2: An Investigation On Mutagenicity And Its Effects On Infectivity And Mortality, Tyler Elliott Silverwood

Honors Theses and Capstones

SARS-CoV-2, the etiological agent of the COVID-19 pandemic, has rapidly become a worldwide public health concern. Classified as a betacoronavirus, it is the third human coronavirus (HCoV) to emerge in the 21st century that causes severe disease, alongside SARS-CoV and MERS-CoV. The genome consists of open reading frames encoding accessory proteins and four structural proteins, including the spike protein which is a key determinant of host cell tropism. Mutations within the genome, particularly the spike gene, have been linked in-vitro to increased binding affinity to the human receptor angiotensin-converting enzyme 2 (hACE2), increased fitness in human hosts, and immune evasion. …


Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu Dec 2020

Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu

Theses & Dissertations

Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, is a superoxide dismutase (SOD) mimic and a known radioprotector of normal tissues. Our recent work demonstrates that MnTE-2-PyP also inhibits prostate cancer progression with radiotherapy; however, the mechanisms remain unclear. In this thesis, we identified that MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting growth of prostate cancer cells. We found that MnTE-2-PyP induced protein oxidations in PC3 cells and one major group of oxidized protein targets were involved in energy metabolism. The oxidative phosphorylation rates were significantly enhanced in both PC3 and LNCaP cells with MnTE-2-PyP treatment, but mitochondrial …


Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma Dec 2020

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


Mesenchymal Stem Cells And Their Extracellular Vesicles: A Potential Game Changer For The Covid-19 Crisis, Dina H. Kassem, Mohamed M. Kamal Sep 2020

Mesenchymal Stem Cells And Their Extracellular Vesicles: A Potential Game Changer For The Covid-19 Crisis, Dina H. Kassem, Mohamed M. Kamal

Pharmacy

Corona virus disease 2019 (COVID-19) is a global public health crisis. The high infectivity of the disease even from non-symptomatic infected patients, together with the lack of a definitive cure or preventive measures are all responsible for disease outbreak. The severity of COVID-19 seems to be mostly dependent on the patients’ own immune response. The over-activation of the immune system in an attempt to kill the virus, can cause a “cytokine storm” which in turn can induce acute respiratory distress syndrome (ARDS), as well as multi-organ damage, and ultimately may lead to death. Thus, harnessing the immunomodulatory properties of mesenchymal …


A Mechanistic And Genomic Analysis Of Molluscum Contagiosum Virus Immune Evasion, Ian Benjamin Harvey Aug 2020

A Mechanistic And Genomic Analysis Of Molluscum Contagiosum Virus Immune Evasion, Ian Benjamin Harvey

Arts & Sciences Electronic Theses and Dissertations

Molluscum contagiosum virus (MCV) is a common human-specific poxvirus with a proclivity for

infecting children and the immune-compromised. A characteristic MCV infection is restricted to

the epidermal layers of the skin and can persist for weeks to years in an otherwise healthy

individual. The high clinical burden of MCV is at odds with our limited knowledge regarding how

it successfully evades the human immune response, which is in part due to the lack of an animal

model or cell line to propagate the virus. Through this dissertation, we have uncovered and

characterized a novel mechanism by which MC80, a protein …


The Enzymatic Function Of The Tir Domain: From Axon Degeneration To Innate Immunity, Kow Essuman May 2020

The Enzymatic Function Of The Tir Domain: From Axon Degeneration To Innate Immunity, Kow Essuman

Arts & Sciences Electronic Theses and Dissertations

The Toll/Interleukin-1 Receptor (TIR) domain is an evolutionarily ancient protein domain conserved from bacteria to eukaryotes, and is an essential signaling component of innate immunity pathways. In animal innate immunity, TIR domains have primarily been described for their scaffolding function in assembling protein complexes in host defense. In plant immunity, TIR domains are key components of the intracellular Nucleotide Binding Leucine rich repeat (NLR) immune receptors that confer resistance to pathogens. These NLR receptors trigger cell death and an immune response upon activation, but their mechanism has remained elusive. In bacteria, TIR domain proteins have been suggested to function as …


Investigating The Interactions Between Individual Calmodulin And Hiv-1 Protein Domains, Riley K. Kendall, Jerry Larue May 2020

Investigating The Interactions Between Individual Calmodulin And Hiv-1 Protein Domains, Riley K. Kendall, Jerry Larue

Student Scholar Symposium Abstracts and Posters

The World Health Organization found that 37.9 million people were living with HIV by the end of 2018. HIV is a virus that weakens the immune system through viral replication and the destruction of CD4+ T-cells, which are white blood cells that detect infection and make antibodies. A cure for HIV has not yet been discovered. HIV-1 contains a Gag polyprotein which regulates the stages of viral replication. Previous studies suggest that the myristoyl group of a matrix protein peptide found on the Gag polyprotein, MA, forms a complex with a calcium-binding, multifunctional regulatory protein called Calmodulin (CaM). CaM …


Loss Of Caspase-8 Function In Combination With Smac Mimetic Treatment Sensitizes Head And Neck Squamous Carcinoma To Radiation Through Induction Of Necroptosis., Burak Uzunparmak May 2020

Loss Of Caspase-8 Function In Combination With Smac Mimetic Treatment Sensitizes Head And Neck Squamous Carcinoma To Radiation Through Induction Of Necroptosis., Burak Uzunparmak

Dissertations & Theses (Open Access)

Caspase-8 (CASP8) is one of the most frequently mutated genes in Head and Neck Squamous Carcinomas (HNSCC), and mutations of CASP8 are associated with poor overall survival. The distribution of these mutations in HNSCC suggests that they are likely to be inactivating. Inhibition of CASP8 has been reported to sensitize cancer cells to necroptosis, a unique cell death mechanism. Here, we evaluated how CASP8 regulates necroptosis in HSNCC using cell line models and syngeneic mouse xenografts. In vitro, knockdown of CASP8 rendered HNSCCs susceptible to necroptosis induced by a second mitochondria-derived activator of caspase (SMAC) mimetic, Birinapant, when combined …


Mutational Analysis And Domain Characterization Of The Apolipoprotein L-1 Ion Channel, Charles M. Schaub Feb 2020

Mutational Analysis And Domain Characterization Of The Apolipoprotein L-1 Ion Channel, Charles M. Schaub

Dissertations, Theses, and Capstone Projects

The human innate immunity factor Apolipoprotein L-1 (APOL1) protects against Trypanosoma brucei brucei infection. Recent studies have shown recombinant APOL1 (rAPOL1) inserts into planar lipid bilayers at an acidic pH 5.6 and forms a cation-selective channel, which opens upon subsequent neutralization, pH 7.2. This corresponds with the pH changes APOL1 would encounter during endosome recycling, suggesting that APOL1 forms a pH-gated ion channel in the plasma membrane of the parasite, leading to uncontrolled ion flux and osmotic imbalance. However, structural and domain characteristics of the APOL1 channel are poorly understood, despite potential similarities to diphtheria and colicin toxins. Utilizing E. …


Molecular And Functional Characterization Of Α-Galactosyl Epitopes In Trypanosoma Cruzi, Uriel Ortega Rodriguez Jan 2020

Molecular And Functional Characterization Of Α-Galactosyl Epitopes In Trypanosoma Cruzi, Uriel Ortega Rodriguez

Open Access Theses & Dissertations

Trypanosoma cruzi, the causative agent of Chagas disease (CD) currently affects 6-7 million people across the world. Currently, only two drugs, benznidazole and nifurtimox, are available for treatment of CD and they are highly toxic and less effective in the chronic stage of the disease. Specific biomarkers for diagnosis and follow-up of treatment do not exist in the clinical settings. following chemotherapy, patients take approximately 10-20 years to exhibit negative seroconversion with the conventional serology assays. Moreover, there is no vaccine available to prevent or treat CD. T. cruzi contains a complex cell surface consisting of several classes of glycoconjugates …


Transcription Regulation Of Human Il1b Gene In Monocytes And Lymphoid Cd4 T Cells, Sree H. Pulugulla Dec 2019

Transcription Regulation Of Human Il1b Gene In Monocytes And Lymphoid Cd4 T Cells, Sree H. Pulugulla

Electronic Theses and Dissertations

Cytokines are key regulators of the inflammatory response and play an important role in facilitating intercellular communication between various immune cell types. Interleukin‑1β (IL‑1β) is a potent pro-inflammatory cytokine that is required for robust initiation of innate immune response and subsequent development of adaptive immunity. IL-1β is first synthesized as an inactive cytoplasmic, non‑glycosylated, precursor molecule (proIL‑1β) by monocytes and macrophages in response to invading pathogenic microbes. The activation of caspase‑1 by inflammasomes cleaves proIL-1β into mature biologically active IL-1β that is released from cells via a non-classical, endoplasmic reticulum‑independent secretory pathway directly from the cytoplasm via Gasdermin D membrane …


Innate Antibodies, Murine Models, And Evolution: A Study Of Trypanosome Lytic Factor Functions And Their Translational Applications, Joseph P. Verdi Sep 2019

Innate Antibodies, Murine Models, And Evolution: A Study Of Trypanosome Lytic Factor Functions And Their Translational Applications, Joseph P. Verdi

Dissertations, Theses, and Capstone Projects

Trypanosome lytic factors (TLFs) are primate-specific antimicrobial protein complexes that lyse African trypanosome parasites by delivering the channel-forming toxin APOL1 to the invading microorganisms. Human serum contains two TLFs that are delivered to the parasite by separate mechanisms, only one of which has been characterized. TLF1 is endocytosed by a receptor that is typically blocked by other serum factors in vivo, suggesting that TLF2 is the more relevant lytic factor in the context of trypanosome immunity. TLF2 is non-covalently associated with polyclonal immunoglobulin M (IgM) antibodies, which we report here to be involved in the uptake mechanism. The TLF2-IgMs …