Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Cancer Biology

Emerin Deficiency Drives Mcf7 Cells To An Invasive Phenotype, Emily Hansen, Christal Rolling, Matthew Wang, James M Holaska Aug 2024

Emerin Deficiency Drives Mcf7 Cells To An Invasive Phenotype, Emily Hansen, Christal Rolling, Matthew Wang, James M Holaska

Rowan-Virtua School of Osteopathic Medicine Departmental Research

During metastasis, cancer cells traverse the vasculature by squeezing through very small gaps in the endothelium. Thus, nuclei in metastatic cancer cells must become more malleable to move through these gaps. Our lab showed invasive breast cancer cells have 50% less emerin protein resulting in smaller, misshapen nuclei, and higher metastasis rates than non-cancerous controls. Thus, emerin deficiency was predicted to cause increased nuclear compliance, cell migration, and metastasis. We tested this hypothesis by downregulating emerin in noninvasive MCF7 cells and found emerin knockdown causes smaller, dysmorphic nuclei, resulting in increased impeded cell migration. Emerin reduction in invasive breast cancer …


Maackia Amurensis Seed Lectin (Masl) And Soluble Human Podoplanin (Shpdpn) Sequence Analysis And Effects On Human Oral Squamous Cell Carcinoma (Oscc) Cell Migration And Viability, Ariel C Yin, Cayla J Holdcraft, Eamonn J Brace, Tyler J Hellmig, Sayan Basu, Saumil Parikh, Katarzyna Jachimowska, Evelyne Kalyoussef, Dylan Roden, Soly Baredes, Eugenio M Capitle, David I Suster, Alan J Shienbaum, Caifeng Zhao, Haiyan Zheng, Kevin Balcaen, Simon Devos, Jurgen Haustraete, Mahnaz Fatahzadeh, Gary S Goldberg May 2024

Maackia Amurensis Seed Lectin (Masl) And Soluble Human Podoplanin (Shpdpn) Sequence Analysis And Effects On Human Oral Squamous Cell Carcinoma (Oscc) Cell Migration And Viability, Ariel C Yin, Cayla J Holdcraft, Eamonn J Brace, Tyler J Hellmig, Sayan Basu, Saumil Parikh, Katarzyna Jachimowska, Evelyne Kalyoussef, Dylan Roden, Soly Baredes, Eugenio M Capitle, David I Suster, Alan J Shienbaum, Caifeng Zhao, Haiyan Zheng, Kevin Balcaen, Simon Devos, Jurgen Haustraete, Mahnaz Fatahzadeh, Gary S Goldberg

Rowan-Virtua School of Osteopathic Medicine Departmental Research

Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, …


Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou Mar 2018

Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou

Urology Faculty Publications

The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival and invasion via resistance to anoikis. In particular, the process of epithelial-mesenchymal-transition (EMT), directed by transforming growth factor-β (TGF-β), confers stem cell properties and acquisition of a migratory and invasive phenotype via resistance to anoikis. Our …


Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau Nov 2017

Tox Regulates Growth, Dna Repair, And Genomic Instability In T-Cell Acute Lymphoblastic Leukemia, Riadh Lobbardi, Jordan Pinder, Barbara Martinez-Pastor, Marina Theodorou, Jessica S. Blackburn, Brian J. Abraham, Yuka Namiki, Marc Mansour, Nouran S. Abdelfattah, Aleksey Molodtsov, Gabriela Alexe, Debra Toiber, Manon De Waard, Esha Jain, Myriam Boukhali, Mattia Lion, Deepak Bhere, Khalid Shah, Alejandro Gutierrez, Kimberly Stegmaier, Lewis B. Silverman, Ruslan I. Sadreyev, John M. Asara, Marjorie A. Oettinger, Wilhelm Haas, A. Thomas Look, Richard A. Young, Raul Mostoslavsky, Graham Dellaire, David M. Langenau

Molecular and Cellular Biochemistry Faculty Publications

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection–associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. …


Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie Oct 2017

Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie

Molecular and Cellular Biochemistry Faculty Publications

Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard molecular cloning …


Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao Oct 2016

Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao

Markey Cancer Center Faculty Publications

The proper establishment of epithelial polarity allows cells to sense and respond to signals that arise from the microenvironment in a spatiotemporally controlled manner. Atypical PKCs (aPKCs) are implicated as key regulators of epithelial polarity. However, the molecular mechanism underlying the negative regulation of aPKCs remains largely unknown. In this study, we demonstrated that PH domain leucine-rich repeat protein phosphatase (PHLPP), a novel family of Ser/Thr protein phosphatases, plays an important role in regulating epithelial polarity by controlling the phosphorylation of both aPKC isoforms. Altered expression of PHLPP1 or PHLPP2 disrupted polarization of Caco2 cells grown in 3D cell cultures …


P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio Mar 2016

P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio

Molecular and Cellular Biochemistry Faculty Publications

Autocrine VEGF signaling is critical for sustaining prostate and other cancer stem cells (CSCs), and it is a potential therapeutic target, but we observed that CSCs isolated from prostate tumors are resistant to anti-VEGF (bevacizumab) and anti-VEGFR (sunitinib) therapy. Intriguingly, resistance is mediated by VEGF/neuropilin signaling, which is not inhibited by bevacizumab and sunitinib, and it involves the induction of P-Rex1, a Rac GEF, and consequent Rac1-mediated ERK activation. This induction of P-Rex1 is dependent on Myc. CSCs isolated from the PTENpc−/− transgenic model of prostate cancer exhibit Rac1-dependent resistance to bevacizumab. Rac1 inhibition or P-Rex1 downregulation increases the …


Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor Aug 2015

Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor

Janet M. Stavnezer

Several proteins in the BRCA-Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA-FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA-FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is …


A Laminin 511 Matrix Is Regulated By Taz And Functions As The Ligand For The Alpha6bbeta1 Integrin To Sustain Breast Cancer Stem Cells, Cheng Chang, Hira Lal Goel, Huijie Gao, Bryan M. Pursell, Leonard D. Shultz, Dale L. Greiner, Sulev Ingerpuu, Manuel Patarroyo, Shiliang Cao, Elgene Lim, Junhao Mao, Karen Kulju. Mckee, Peter D. Yurchenco, Arthur M. Mercurio May 2015

A Laminin 511 Matrix Is Regulated By Taz And Functions As The Ligand For The Alpha6bbeta1 Integrin To Sustain Breast Cancer Stem Cells, Cheng Chang, Hira Lal Goel, Huijie Gao, Bryan M. Pursell, Leonard D. Shultz, Dale L. Greiner, Sulev Ingerpuu, Manuel Patarroyo, Shiliang Cao, Elgene Lim, Junhao Mao, Karen Kulju. Mckee, Peter D. Yurchenco, Arthur M. Mercurio

Arthur M. Mercurio

Understanding how the extracellular matrix impacts the function of cancer stem cells (CSCs) is a significant but poorly understood problem. We report that breast CSCs produce a laminin (LM) 511 matrix that promotes self-renewal and tumor initiation by engaging the alpha6Bbeta1 integrin and activating the Hippo transducer TAZ. Although TAZ is important for the function of breast CSCs, the mechanism is unknown. We observed that TAZ regulates the transcription of the alpha5 subunit of LM511 and the formation of a LM511 matrix. These data establish a positive feedback loop involving TAZ and LM511 that contributes to stemness in breast cancer.


Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives Nov 2014

Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives

David Grünwald

The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3sigma) to be similarly regulated by Nup98. The expression …


Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari Oct 2013

Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari

Dartmouth Scholarship

One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killer FLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using …


Cdk1 And Plk1 Mediate A Clasp2 Phospho-Switch That Stabilizes Kinetochore–Microtubule Attachments, Ana R. R. Maia, Zaira Garcia, Lilian Kabeche, Marin Barisic Jan 2012

Cdk1 And Plk1 Mediate A Clasp2 Phospho-Switch That Stabilizes Kinetochore–Microtubule Attachments, Ana R. R. Maia, Zaira Garcia, Lilian Kabeche, Marin Barisic

Dartmouth Scholarship

Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)-microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT-MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs …