Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Environmental Microbiology and Microbial Ecology

Series

Institution
Keyword
Publication

Articles 1 - 16 of 16

Full-Text Articles in Life Sciences

Anaerobic Oxidation Of Ethane, Propane, And Butane By Marine Microbes: A Mini Review, Rajesh Singh, Michael S. Guzman, Arpita Bose Oct 2017

Anaerobic Oxidation Of Ethane, Propane, And Butane By Marine Microbes: A Mini Review, Rajesh Singh, Michael S. Guzman, Arpita Bose

Biology Faculty Publications & Presentations

The deep ocean and its sediments are a continuous source of non-methane short-chain alkanes (SCAs) including ethane, propane, and butane. Their high global warming potential, and contribution to local carbon and sulfur budgets has drawn significant scientific attention. Importantly, microbes can use gaseous alkanes and oxidize them to CO2, thus acting as effective biofilters. A relative decrease of these gases with a concomitant 13C enrichment of propane and n-butane in interstitial waters vs. the source suggests microbial anaerobic oxidation. The reported uncoupling of sulfate-reduction (SR) from anaerobic methane oxidation supports their microbial consumption. To date, strain …


Spatial And Temporal Heterogeneity Of Microbial Life In Artificial Landscapes, Roopkamal Kaur, Aditi Sengupta, Peter A. Troch Sep 2017

Spatial And Temporal Heterogeneity Of Microbial Life In Artificial Landscapes, Roopkamal Kaur, Aditi Sengupta, Peter A. Troch

STAR Program Research Presentations

The Landscape Evolution Observatory (LEO) project at Biosphere 2 consists of three replicated artificial landscapes which are sealed within a climate-controlled glass house. LEO is composed of basaltic soil material with low organic matter, nutrients, and microbes. The landscapes are built to resemble zero-order basins and enables researchers to observe hydrological, biological, and geochemical evolution of landscapes in a controlled environment. This study is focused on capturing microbial community dynamics in LEO soil, pre- and post-controlled rainfall episodes. Soil samples were collected from six different positions and at five depths in each of the three slopes followed by DNA extraction …


Bacterial Diversity Impacts As A Result Of Combined Sewer Overflow In A Polluted Waterway, Olga Calderón, Holly Porter-Morgan, Joby Jacob, Willis Elkins Sep 2017

Bacterial Diversity Impacts As A Result Of Combined Sewer Overflow In A Polluted Waterway, Olga Calderón, Holly Porter-Morgan, Joby Jacob, Willis Elkins

Publications and Research

Newtown Creek is an industrial waterway and former tidal wetland in New York City. It is one of the most polluted water bodies in the United States and was designated as a superfund site in 2010. For over a century, organic compounds, heavy metals, and other forms of industrial pollution have disrupted the creek’s environment. The creek is also impacted by discharges from twenty combined sewer overflow pipes, which may deposit raw sewage or partially treated wastewater directly into the creek during heavy or sustained rain events. Combined sewer overflow events and associated nutrient over-enrichment at the creek drive eutrophication …


Community Structure Of Lithotrophically-Driven Hydrothermal Microbial Mats From The Mariana Arc And Back-Arc, Kevin W. Hager, Heather Fullerton, David A. Butterfield, Craig L. Moyer Aug 2017

Community Structure Of Lithotrophically-Driven Hydrothermal Microbial Mats From The Mariana Arc And Back-Arc, Kevin W. Hager, Heather Fullerton, David A. Butterfield, Craig L. Moyer

Biology Faculty and Staff Publications

The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, …


How Science Makes America Great, Kenneth Nickerson Jul 2017

How Science Makes America Great, Kenneth Nickerson

Kenneth Nickerson Papers

The proposed Federal Budget cuts funding for NIH, NSF, and CDC by 16% each and for the EPA by a whopping 31%. Ouch! The situation seems ironic because of President Trump’s slogan “Make America great again!”, which I agree with wholeheartedly. In addition to being a scientist, I also love history (especially military history) and science is at the top of my list of what has made the United States great. ... Why do we do it? I’m in science because it is rewarding. It is invigorating to discover how nature works. Scientists may act individually and in relative obscurity, …


Quorum Sensing Signals Produced By Heterotrophic Bacteria In Black Band Disease (Bbd) Of Corals And Their Potential Role In Bbd Pathogenesis, Chinmayee D. Bhedi Jun 2017

Quorum Sensing Signals Produced By Heterotrophic Bacteria In Black Band Disease (Bbd) Of Corals And Their Potential Role In Bbd Pathogenesis, Chinmayee D. Bhedi

FIU Electronic Theses and Dissertations

Black band disease (BBD) of corals is a temperature dependent, highly virulent, polymicrobial disease affecting reef-building corals globally. The microbial consortium of BBD is primarily comprised of functional physiological groups that include photosynthetic cyanobacteria, sulfate reducers, sulfide oxidizers and a vast repertoire of heterotrophic bacteria. Quorum sensing (QS), the cell-density dependent communication phenomenon in bacteria, is known to induce expression of genes for a variety of virulence factors in diseases worldwide. Microbes capable of QS release signals such as acyl homoserine lactones (AHLs) and autoinducer-2 (AI-2), which coordinate microbial interaction. The focus of the present study was to investigate the …


Phenomenological And Molecular Basis Of The Cnidarian Immune System, Tanya Brown Jun 2017

Phenomenological And Molecular Basis Of The Cnidarian Immune System, Tanya Brown

FIU Electronic Theses and Dissertations

Coral reefs are one of the most diverse ecosystems on the planet due partially to the habitat structure provided by corals. Corals are long lived organisms that can live for hundreds of years and as a result growth of many species is very slow. As a result of this, recovery of corals from disease outbreaks is very slow and difficult and therefore the ecosystem is deteriorating rapidly. Due to this increase in disease and its detrimental effect on coral reefs, it has become imperative to study how corals respond to disease outbreaks. The response of the coral to pathogens is …


Ancient Bacteria–Amoeba Relationships And Pathogenic Animal Bacteria, Joan E. Strassmann, Longfei Shu May 2017

Ancient Bacteria–Amoeba Relationships And Pathogenic Animal Bacteria, Joan E. Strassmann, Longfei Shu

Biology Faculty Publications & Presentations

Long before bacteria infected humans, they infected amoebas, which remain a potentially important reservoir for human disease. Diverse soil amoebas including Dictyostelium and Acanthamoeba can host intracellular bacteria. Though the internal environment of free-living amoebas is similar in many ways to that of mammalian macrophages, they differ in a number of important ways, including temperature. A new study in PLOS Biology by Taylor-Mulneix et al. demonstrates that Bordetella bronchiseptica has two different gene suites that are activated depending on whether the bacterium finds itself in a hot mammalian or cool amoeba host environment. This study specifically shows that B. …


Phytohormone Signaling In Chlorella Sorokiniana: Perspectives On The Evolution Of Plant Cell-To-Cell Signaling, Maya Khasin Apr 2017

Phytohormone Signaling In Chlorella Sorokiniana: Perspectives On The Evolution Of Plant Cell-To-Cell Signaling, Maya Khasin

School of Biological Sciences: Dissertations, Theses, and Student Research

Cell-to-cell communication is a key aspect of microbial physiology and population dynamics, and a cornerstone in understanding the evolution of multicellularity. Quorum sensing in bacteria is a canonical example of microbial cell-to-cell signaling, in which bacteria use small molecule signals in order to monitor their population size and modulate their physiology accordingly. We propose that the evolution of plant hormone signaling arose in unicellular green algae, analogously to quorum sensing in bacteria, and that the complexity of these pathways required the recruitment of increasingly specific enzymes to increasingly sophisticated gene networks throughout the course of phytohormone signaling evolution. Using Chlorella …


Microbial Interactions In The Phyllosphere Increase Plant Performance Under Herbivore Biotic Stress, Muhammad Saleem, Nicole Meckes, Zahida H. Pervaiz, Milton B. Traw Jan 2017

Microbial Interactions In The Phyllosphere Increase Plant Performance Under Herbivore Biotic Stress, Muhammad Saleem, Nicole Meckes, Zahida H. Pervaiz, Milton B. Traw

Plant and Soil Sciences Faculty Publications

The phyllosphere supports a tremendous diversity of microbes and other organisms. However, little is known about the colonization and survival of pathogenic and beneficial bacteria alone or together in the phyllosphere across the whole plant life-cycle under herbivory, which hinders our ability to understand the role of phyllosphere bacteria on plant performance. We addressed these questions in experiments using four genetically and biogeographically diverse accessions of Arabidopsis thaliana, three ecologically important bacterial strains (Pseudomonas syringae DC3000, Xanthomonas campestris, both pathogens, and Bacillus cereus, plant beneficial) under common garden conditions that included fungus gnats (Bradysia spp.). …


Quorum Sensing In Candida Albicans: Farnesol Versus Farnesoic Acid, Wayne R. Riekhof, Kenneth Nickerson Jan 2017

Quorum Sensing In Candida Albicans: Farnesol Versus Farnesoic Acid, Wayne R. Riekhof, Kenneth Nickerson

Kenneth Nickerson Papers

Candida albicans is a clinically important dimorphic fungus that exhibits either a budding yeast or a mycelial-hyphal or pseudohyphal growth, depending on environmental conditions. The yeast-to-mycelia morphologic transition, which is generally regarded as an important virulence determinant, depends on the inoculum size of liquid cultures. The yeast form is favored when cultures are inoculated at > 106 cells∙mL–1, whereas the mycelial form is favored at inoculum densities < 106∙mL–1. Farnesoic acid (FA) and farnesol (FOH) are two related sesquiterpene quorum- sensing molecules that, upon accumulation, prevent the yeast-to-mycelial conversion. Oh et al. showed that C. albicans …


Deciphering Fungal Dimorphism: Farnesol’S Unanswered Questions, Kenneth Nickerson, Audrey L. Atkin Jan 2017

Deciphering Fungal Dimorphism: Farnesol’S Unanswered Questions, Kenneth Nickerson, Audrey L. Atkin

Kenneth Nickerson Papers

Candida albicans excretes E,E-farnesol as a virulence factor and quorum sensing molecule that prevents the yeast to hyphal conversion. Polke et al. (2016) identified eed1Δ/Δ as the first farnesol hypersensitive mutant of C. albicans. eed1Δ/Δ also excretes 10X more farnesol and while able to form hyphae, it cannot maintain hyphae. This mutant enables new research into unanswered questions, including the existence of potential farnesol receptors and transporters, regulation of farnesol synthesis, and relationships among farnesol, germ tube formation and hyphal maintenance. The eed1 farnesol hypersensitivity can be explained by higher internal concentrations of farnesol or lower thresholds for response. One …


Ecoenzymes As Indicators Of Compost To Suppress Rhizoctonia Solani, Deborah A. Neher, Lynn Fang, Thomas R. Weicht Jan 2017

Ecoenzymes As Indicators Of Compost To Suppress Rhizoctonia Solani, Deborah A. Neher, Lynn Fang, Thomas R. Weicht

College of Agriculture and Life Sciences Faculty Publications

Reports of disease suppression by compost are inconsistent likely because there are no established standards for feedstock material, maturity age for application, and application rate. The overall goal of the study was to evaluate a suite of biological indicators for their ability to predict disease suppression. Indicators included both commercial available methods for compost stability (Solvita™, respiration) and metrics of soil ecology not yet adopted by the compost industry (e.g., ecoenzymes, nematode community index). Damping-off by Rhizoctonia solani on radish was chosen as a model system given its global importance, competitiveness affected by carbon quality, and lack of disease management …


Review Of The Algal Biology Program Within The National Alliance For Advanced Biofuels And Bioproducts, Clifford J. Unkefer, Richard T. Sayre, Jon K. Magnuson, Daniel B. Anderson, Ivan Baxter, Ian K. Balby, Judith K. Brown, Michael Carleton, Rose Ann Cattolico, Taraka Dale, Timothy P. Devarenne, C. Meghan Downes, Susan K. Dutcher, David T. Fox, Ursula Goodenough, Jan Jaworski, Jonathan E. Holladay, David M. Kramer, Andrew T. Koppisch, Mary S. Lipton, Babetta L. Marrone, Margaret Mccormick, István Molnár, John B. Mott, Kimberly L. Ogden, Ellen A. Panisko, Matteo Pellegrini, Juergen Polle, James W. Richardson, Martin Sabarsky, Shawn R. Starkenburg, Gary D. Stormo, Munehiro Teshima, Scott N. Twary, Pat J. Unkefer, Joshua S. Yuan, José A. Olivares Jan 2017

Review Of The Algal Biology Program Within The National Alliance For Advanced Biofuels And Bioproducts, Clifford J. Unkefer, Richard T. Sayre, Jon K. Magnuson, Daniel B. Anderson, Ivan Baxter, Ian K. Balby, Judith K. Brown, Michael Carleton, Rose Ann Cattolico, Taraka Dale, Timothy P. Devarenne, C. Meghan Downes, Susan K. Dutcher, David T. Fox, Ursula Goodenough, Jan Jaworski, Jonathan E. Holladay, David M. Kramer, Andrew T. Koppisch, Mary S. Lipton, Babetta L. Marrone, Margaret Mccormick, István Molnár, John B. Mott, Kimberly L. Ogden, Ellen A. Panisko, Matteo Pellegrini, Juergen Polle, James W. Richardson, Martin Sabarsky, Shawn R. Starkenburg, Gary D. Stormo, Munehiro Teshima, Scott N. Twary, Pat J. Unkefer, Joshua S. Yuan, José A. Olivares

Publications and Research

In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome …


Hidden Diversity Revealed By Genome-Resolved Metagenomics Of Iron-Oxidizing Microbial Mats From Lō’Ihi Seamount, Hawai’I, Heather Fullerton, Kevin W. Hager, Sean M. Mcallister, Craig L. Moyer Jan 2017

Hidden Diversity Revealed By Genome-Resolved Metagenomics Of Iron-Oxidizing Microbial Mats From Lō’Ihi Seamount, Hawai’I, Heather Fullerton, Kevin W. Hager, Sean M. Mcallister, Craig L. Moyer

Biology Faculty and Staff Publications

The Zetaproteobacteria are ubiquitous in marine environments, yet this class of Proteobacteria is only represented by a few closely-related cultured isolates. In high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the community driving its structure. Biogeography of Zetaproteobacteria has shown two ubiquitous operational taxonomic units (OTUs), yet much is unknown about their genomic diversity. Genome-resolved metagenomics allows for the specific binning of microbial genomes based on genomic signatures present in composite metagenome assemblies. This resulted in the recovery of 93 genome bins, of which 34 were classified as Zetaproteobacteria. Form II ribulose 1,5-bisphosphate carboxylase genes …


What's In A Name? New Bacterial Species And Changes To Taxonomic Status From 2012 Through 2015, Erik Munson, Karen C. Carroll Jan 2017

What's In A Name? New Bacterial Species And Changes To Taxonomic Status From 2012 Through 2015, Erik Munson, Karen C. Carroll

Clinical Lab Sciences Faculty Research and Publications

Technological advancements in fields such as molecular genetics and the human microbiome have resulted in an unprecedented recognition of new bacterial genus/species designations by the International Journal of Systematic and Evolutionary Microbiology. Knowledge of designations involving clinically significant bacterial species would benefit clinical microbiologists in the context of emerging pathogens, performance of accurate organism identification, and antimicrobial susceptibility testing. In anticipation of subsequent taxonomic changes being compiled by the Journal of Clinical Microbiology on a biannual basis, this compendium summarizes novel species and taxonomic revisions specific to bacteria derived from human clinical specimens from the calendar years 2012 through …