Open Access. Powered by Scholars. Published by Universities.®

Law Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Law

Humans In The Loop, Nicholson Price Ii, Rebecca Crootof, Margot Kaminski Jan 2023

Humans In The Loop, Nicholson Price Ii, Rebecca Crootof, Margot Kaminski

Articles

From lethal drones to cancer diagnostics, humans are increasingly working with complex and artificially intelligent algorithms to make decisions which affect human lives, raising questions about how best to regulate these “human in the loop” systems. We make four contributions to the discourse.

First, contrary to the popular narrative, law is already profoundly and often problematically involved in governing human-in-the-loop systems: it regularly affects whether humans are retained in or removed from the loop. Second, we identify “the MABA-MABA trap,” which occurs when policymakers attempt to address concerns about algorithmic incapacities by inserting a human into decision making process. Regardless …


Open-Source Clinical Machine Learning Models: Critical Appraisal Of Feasibility, Advantages, And Challenges, Keerthi B. Harish, W. Nicholson Price Ii, Yindalon Aphinyanaphongs Nov 2022

Open-Source Clinical Machine Learning Models: Critical Appraisal Of Feasibility, Advantages, And Challenges, Keerthi B. Harish, W. Nicholson Price Ii, Yindalon Aphinyanaphongs

Articles

Machine learning applications promise to augment clinical capabilities and at least 64 models have already been approved by the US Food and Drug Administration. These tools are developed, shared, and used in an environment in which regulations and market forces remain immature. An important consideration when evaluating this environment is the introduction of open-source solutions in which innovations are freely shared; such solutions have long been a facet of digital culture. We discuss the feasibility and implications of open-source machine learning in a health care infrastructure built upon proprietary information. The decreased cost of development as compared to drugs and …


New Innovation Models In Medical Ai, W Nicholson Price Ii, Rachel E. Sachs, Rebecca S. Eisenberg Mar 2022

New Innovation Models In Medical Ai, W Nicholson Price Ii, Rachel E. Sachs, Rebecca S. Eisenberg

Articles

In recent years, scientists and researchers have devoted considerable resources to developing medical artificial intelligence (AI) technologies. Many of these technologies—particularly those that resemble traditional medical devices in their functions—have received substantial attention in the legal and policy literature. But other types of novel AI technologies, such as those related to quality improvement and optimizing use of scarce facilities, have been largely absent from the discussion thus far. These AI innovations have the potential to shed light on important aspects of health innovation policy. First, these AI innovations interact less with the legal regimes that scholars traditionally conceive of as …


Modeling Through, Ryan Calo Jan 2022

Modeling Through, Ryan Calo

Articles

Theorists of justice have long imagined a decision-maker capable of acting wisely in every circumstance. Policymakers seldom live up to this ideal. They face well-understood limits, including an inability to anticipate the societal impacts of state intervention along a range of dimensions and values. Policymakers cannot see around corners or address societal problems at their roots. When it comes to regulation and policy-setting, policymakers are often forced, in the memorable words of political economist Charles Lindblom, to “muddle through” as best they can.

Powerful new affordances, from supercomputing to artificial intelligence, have arisen in the decades since Lindblom’s 1959 article …


Terrified By Technology: How Systemic Bias Distorts U.S. Legal And Regulatory Responses To Emerging Technology, Steve Calandrillo, Nolan Kobuke Anderson Jan 2022

Terrified By Technology: How Systemic Bias Distorts U.S. Legal And Regulatory Responses To Emerging Technology, Steve Calandrillo, Nolan Kobuke Anderson

Articles

Americans are becoming increasingly aware of the systemic biases we possess and how those biases preclude us from collectively living out the true meaning of our national creed. But to fully understand systemic bias we must acknowledge that it is pervasive and extends beyond the contexts of race, privilege, and economic status. Understanding all forms of systemic bias helps us to better understand ourselves and our shortcomings. At first glance, a human bias against emerging technology caused by systemic risk misperception might seem uninteresting or unimportant. But this Article demonstrates how the presence of systemic bias anywhere, even in an …


Problematic Interactions Between Ai And Health Privacy, W. Nicholson Price Ii Nov 2021

Problematic Interactions Between Ai And Health Privacy, W. Nicholson Price Ii

Articles

Problematic Interactions Between AI and Health Privacy Nicholson Price, University of Michigan Law SchoolFollow Abstract The interaction of artificial intelligence (AI) and health privacy is a two-way street. Both directions are problematic. This Essay makes two main points. First, the advent of artificial intelligence weakens the legal protections for health privacy by rendering deidentification less reliable and by inferring health information from unprotected data sources. Second, the legal rules that protect health privacy nonetheless detrimentally impact the development of AI used in the health system by introducing multiple sources of bias: collection and sharing of data by a small set …


Technology And The (Re)Construction Of Law, Christian Sundquist Jan 2021

Technology And The (Re)Construction Of Law, Christian Sundquist

Articles

Innovative advancements in technology and artificial intelligence have created a unique opportunity to re-envision both legal education and the practice of law. The COVID-19 pandemic has accelerated the technological disruption of both legal education and practice, as remote work, “Zoom” client meetings, virtual teaching, and online dispute resolution have become increasingly normalized. This essay explores how technological innovations in the coronavirus era are facilitating radical changes to our traditional adversarial system, the practice of law, and the very meaning of “legal knowledge.” It concludes with suggestions on how to reform legal education to better prepare our students for the emerging …


Medical Ai And Contextual Bias, W. Nicholson Price Ii Sep 2019

Medical Ai And Contextual Bias, W. Nicholson Price Ii

Articles

Artificial intelligence will transform medicine. One particularly attractive possibility is the democratization of medical expertise. If black-box medical algorithms can be trained to match the performance of high-level human experts — to identify malignancies as well as trained radiologists, to diagnose diabetic retinopathy as well as board-certified ophthalmologists, or to recommend tumor-specific courses of treatment as well as top-ranked oncologists — then those algorithms could be deployed in medical settings where human experts are not available, and patients could benefit. But there is a problem with this vision. Privacy law, malpractice, insurance reimbursement, and FDA approval standards all encourage developers …


An Agent-Based Model Of Financial Benchmark Manipulation, Gabriel Virgil Rauterberg, Megan Shearer, Michael Wellman Jun 2019

An Agent-Based Model Of Financial Benchmark Manipulation, Gabriel Virgil Rauterberg, Megan Shearer, Michael Wellman

Articles

Financial benchmarks estimate market values or reference rates used in a wide variety of contexts, but are often calculated from data generated by parties who have incentives to manipulate these benchmarks. Since the the London Interbank Offered Rate (LIBOR) scandal in 2011, market participants, scholars, and regulators have scrutinized financial benchmarks and the ability of traders to manipulate them. We study the impact on market quality and microstructure of manipulating transaction-based benchmarks in a simulated market environment. Our market consists of a single benchmark manipulator with external holdings dependent on the benchmark, and numerous background traders unaffected by the benchmark. …


Artificial Intelligence In The Medical System: Four Roles For Potential Transformation, W. Nicholson Price Ii Feb 2019

Artificial Intelligence In The Medical System: Four Roles For Potential Transformation, W. Nicholson Price Ii

Articles

Artificial intelligence (AI) looks to transform the practice of medicine. As academics and policymakers alike turn to legal questions, including how to ensure high-quality performance by medical AI, a threshold issue involves what role AI will play in the larger medical system. This Article argues that AI can play at least four distinct roles in the medical system, each potentially transformative: pushing the frontiers of medical knowledge to increase the limits of medical performance, democratizing medical expertise by making specialist skills more available to non-specialists, automating drudgery within the medical system, and allocating scarce medical resources. Each role raises its …


When Ais Outperform Doctors: Confronting The Challenges Of A Tort-Induced Over-Reliance On Machine Learning, A. Michael Froomkin, Ian Kerr, Joelle Pineau Jan 2019

When Ais Outperform Doctors: Confronting The Challenges Of A Tort-Induced Over-Reliance On Machine Learning, A. Michael Froomkin, Ian Kerr, Joelle Pineau

Articles

Someday, perhaps soon, diagnostics generated by machine learning (ML) will have demonstrably better success rates than those generated by human doctors. What will the dominance of ML diagnostics mean for medical malpractice law, for the future of medical service provision, for the demand for certain kinds of doctors, and in the long run for the quality of medical diagnostics itself?

This Article argues that once ML diagnosticians, such as those based on neural networks, are shown to be superior, existing medical malpractice law will require superior ML-generated medical diagnostics as the standard of care in clinical settings. Further, unless implemented …


Automatically Extracting Meaning From Legal Texts: Opportunities And Challenges, Kevin D. Ashley Jan 2019

Automatically Extracting Meaning From Legal Texts: Opportunities And Challenges, Kevin D. Ashley

Articles

This paper examines impressive new applications of legal text analytics in automated contract review, litigation support, conceptual legal information retrieval, and legal question answering against the backdrop of some pressing technological constraints. First, artificial intelligence (Al) programs cannot read legal texts like lawyers can. Using statistical methods, Al can only extract some semantic information from legal texts. For example, it can use the extracted meanings to improve retrieval and ranking, but it cannot yet extract legal rules in logical form from statutory texts. Second, machine learning (ML) may yield answers, but it cannot explain its answers to legal questions or …


Using Ai To Analyze Patent Claim Indefiniteness, Dean Alderucci, Kevin D. Ashley Jan 2019

Using Ai To Analyze Patent Claim Indefiniteness, Dean Alderucci, Kevin D. Ashley

Articles

In this Article, we describe how to use artificial intelligence (AI) techniques to partially automate a type of legal analysis, determining whether a patent claim satisfies the definiteness requirement. Although fully automating such a high-level cognitive task is well beyond state-of-the-art AI, we show that AI can nevertheless assist the decision maker in making this determination. Specifically, the use of custom AI technology can aid the decision maker by (1) mining patent text to rapidly bring relevant information to the decision maker attention, and (2) suggesting simple inferences that can be drawn from that information.

We begin by summarizing the …


Outcome Prediction In The Practice Of Law, Mark K. Osbeck, Michael Gilliland Jul 2018

Outcome Prediction In The Practice Of Law, Mark K. Osbeck, Michael Gilliland

Articles

Business forecasters typically use time-series models to predict future demands, the forecasts informing management decision making and guiding organizational planning. But this type of forecasting is merely a subset of the broader field of predictive analytics, models used by data scientists in all manner of applications, including credit approvals, fraud detection, product-purchase and music-listening recommendations, and even the real-time decisions made by self-driving vehicles. The practice of law requires decisions that must be based on predictions of future legal outcomes, and data scientists are now developing forecasting methods to support the process. In this article, Mark Osbeck and Mike Gilliland …


Ethics Of Using Artificial Intelligence To Augment Drafting Legal Documents, David Hricik Jan 2018

Ethics Of Using Artificial Intelligence To Augment Drafting Legal Documents, David Hricik

Articles

Skynet is not and may never be self-aware, but machines are al-ready doing legal research, drafting legal documents, negotiating disputes such as traffic tickets and divorce schedules, and even drafting patent applications. Machines learn from us, and each other, to augment the ability of lawyers to represent clients—and even to replace lawyers completely. While it also threatens lawyers’ jobs, the exponential increase in the capacity of machines to transmit, store, and process data presents the opportunity for lawyers to use these services to provide better, cheaper, or faster legal representation to clients. By way of familiar example, instead of determining …


Artificial Intelligence In Health Care: Applications And Legal Implications, W. Nicholson Price Ii Nov 2017

Artificial Intelligence In Health Care: Applications And Legal Implications, W. Nicholson Price Ii

Articles

Artificial intelligence (AI) is rapidly moving to change the healthcare system. Driven by the juxtaposition of big data and powerful machine learning techniques—terms I will explain momentarily—innovators have begun to develop tools to improve the process of clinical care, to advance medical research, and to improve efficiency. These tools rely on algorithms, programs created from healthcare data that can make predictions or recommendations. However, the algorithms themselves are often too complex for their reasoning to be understood or even stated explicitly. Such algorithms may be best described as “black-box.” This article briefly describes the concept of AI in medicine, including …


Artificial Intelligence Policy: A Primer And Roadmap, Ryan Calo Jan 2017

Artificial Intelligence Policy: A Primer And Roadmap, Ryan Calo

Articles

Talk of artificial intelligence is everywhere. People marvel at the capacity of machines to translate any language and master any game. Others condemn the use of secret algorithms to sentence criminal defendants or recoil at the prospect of machines gunning for blue, pink, and white-collar jobs. Some worry aloud that artificial intelligence will be humankind’s “final invention.” This essay, prepared in connection with UC Davis Law Review's 50th anniversary symposium, explains why AI is suddenly on everyone's mind and provides a roadmap to the major policy questions AI raises. The essay is designed to help policymakers, investors, technologists, scholars, and …


Computer Models For Legal Prediction, Kevin D. Ashley, Stephanie Bruninghaus Jan 2006

Computer Models For Legal Prediction, Kevin D. Ashley, Stephanie Bruninghaus

Articles

Computerized algorithms for predicting the outcomes of legal problems can extract and present information from particular databases of cases to guide the legal analysis of new problems. They can have practical value despite the limitations that make reliance on predictions risky for other real-world purposes such as estimating settlement values. An algorithm's ability to generate reasonable legal arguments also is important. In this article, computerized prediction algorithms are compared not only in terms of accuracy, but also in terms of their ability to explain predictions and to integrate predictions and arguments. Our approach, the Issue-Based Prediction algorithm, is a program …


Capturing The Dialectic Between Principles And Cases, Kevin D. Ashley Jan 2004

Capturing The Dialectic Between Principles And Cases, Kevin D. Ashley

Articles

Theorists in ethics and law posit a dialectical relationship between principles and cases; abstract principles both inform and are informed by the decisions of specific cases. Until recently, however, it has not been possible to investigate or confirm this relationship empirically. This work involves a systematic study of a set of ethics cases written by a professional association's board of ethical review. Like judges, the board explains its decisions in opinions. It applies normative standards, namely principles from a code of ethics, and cites past cases. We hypothesized that the board's explanations of its decisions elaborated upon the meaning and …


Designing Electronic Casebooks That Talk Back: The Cato Program, Kevin D. Ashley Jan 2000

Designing Electronic Casebooks That Talk Back: The Cato Program, Kevin D. Ashley

Articles

Electronic casebooks offer important benefits of flexibility in control of presentation, connectivity, and interactivity. These additional degrees of freedom, however, also threaten to overwhelm students. If casebook authors and instructors are to achieve their pedagogical goals, they will need new methods for guiding students. This paper presents three such methods developed in an intelligent tutoring environment for engaging students in legal role-playing, making abstract concepts explicit and manipulable, and supporting pedagogical dialogues. This environment is built around a program known as CATO, which employs artificial intelligence techniques to teach first-year law students how to make basic legal arguments with cases. …