Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Two-Dimensional Layered Materials (Graphene-Mos2) Nanocatalysts For Hydrogen Production, Jacob Dobler, Taylor Robinson, Sanju Gupta 7455940 Nov 2018

Two-Dimensional Layered Materials (Graphene-Mos2) Nanocatalysts For Hydrogen Production, Jacob Dobler, Taylor Robinson, Sanju Gupta 7455940

Posters-at-the-Capitol

Recent development of two-dimensional layered materials including graphene-family and related nanomaterials have arisen as potential game changer for energy, water and sensing applications. While graphene is a form of carbon arranged hexagonally within atomic thin sheet, MoS2 is becoming a popular, efficient, and cost-effective catalyst for electrochemical energy devices, in contrast to expensive platinum and palladium catalysts. In this work, we electrochemically desulfurize few-layer molybdenum disulfide (MoS2) and aerogels with reduced graphene oxide (rGO) prepared under hydrothermal conditions ((P< 20 bar, T< 200 oC), for improving hydrogen evolution reaction (HER) activity via point defects (S-vacancy). Moreover, the interactions between rGO and ...


Physical Properties Of Engineered Nanocomposites For Defense Applications, Alex Henson, Sanju Gupta Nov 2018

Physical Properties Of Engineered Nanocomposites For Defense Applications, Alex Henson, Sanju Gupta

Posters-at-the-Capitol

Polymer nanocomposites are significant for modern and future technologies (aerospace, defense, water purification etc.) due to their tailored properties, lightweight and low cost. However, ‘forward’ engineered polymer (host matrix) composites with smaller size nanoparticles (guest) providing desired properties targeting specific applications remains a challenging task as they depend largely on nanoparticles size, shape and loading (volume fraction). This study develops polymer nanocomposites impregnated with ‘organic-inorganic’ silsesquioxane nanoparticles and graphene nanoribbons, and investigates microscopic structure and dynamics of interfacial layer to predict macroscale properties. The nanocomposites consist of poly(2-vinylpyridine) (P2VP) polymer (segment ~5nm) with spherical silsesquioxane nanoparticles (diameter ~2-5nm) and ...