Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park Oct 2014

Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park

Open Access Dissertations

The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the continuous downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Hence, novel devices and better channel materials than Si are considered to improve the metal-oxide-semiconductor field-effect transistors (MOSFETs) device performance. III-V compound semiconductors and multi-gate structures are being considered as promising candidates in the next CMOS technology. III-V and Si nano-scale transistors in different architectures are investigated (1) to compare the performance between InGaAs of III-V compound semiconductors and …


Design And Analysis Of Solar Cells By Coupled Electrical - Optical Simulation, Xufeng Wang Oct 2014

Design And Analysis Of Solar Cells By Coupled Electrical - Optical Simulation, Xufeng Wang

Open Access Dissertations

Careful electrical design and optical design are both crucial for achieving high-efficiency solar cells. It is common to link these two aspects serially; the optical design is first done to minimize reflection and maximize light trapping, and then the resulting optical generation rate is input to the electrical simulation. For very high efficiency solar cells that approach the Shockley-Queisser limit, however, electrical and optical transports are tightly coupled in both directions. Photons generated by radiative recombination can be reabsorbed to create additional electron-hole pairs (so-called photon recycling), which decreases losses. A variety of novel photon management schemes are currently being …


Solar Cell Temperature Dependent Efficiency And Very High Temperature Efficiency Limits, John Robert Wilcox Oct 2013

Solar Cell Temperature Dependent Efficiency And Very High Temperature Efficiency Limits, John Robert Wilcox

Open Access Dissertations

Clean renewable solar energy is and will continue to be a critically important source of electrical energy. Solar energy has the potential of meeting all of the world's energy needs, and has seen substantial growth in recent years. Solar cells can convert sun light directly into electrical energy, and much progress has been made in making them less expensive and more efficient. Solar cells are often characterized and modeled at 25 °C, which is significantly lower than their peak operating temperature. In some thermal concentrating systems, solar cells operate above 300 °C. Since increasing the temperature drastically affects the terminal …