Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Towards Highly Sensitive Capacitance Measurements Of A Quantum Anomalous Hall Phase In Van Der Waal Heterostructures, Kayla Cerminara May 2022

Towards Highly Sensitive Capacitance Measurements Of A Quantum Anomalous Hall Phase In Van Der Waal Heterostructures, Kayla Cerminara

UNLV Theses, Dissertations, Professional Papers, and Capstones

One of the pioneering achievements in condensed matter physics of the 20th century is the observation of the quantum Hall e↵ect (QHE) in which the Hall resistance in a two-dimensional (2D) sample takes on quantized values in the presence of a strong perpendicular magnetic field. The precise quantization of the hall resistance to one part in a billion has provided a practical, worldwide resistance standard. A long-standing goal has been to realize a similar state of matter but without the need of a strong quantizing magnetic field. The quantum anomalous Hall e↵ect (QAHE) is such a state that is predicted …


Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen Jan 2020

Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen

Physics & Astronomy Faculty Research

We report on mechanical properties of blue phosphorus nanotubes (BluePNTs) from systematic molecular dynamics simulations, adopting a Stillinger-Weber potential with parameters determined by fitting to energetic and structural data from first-principles calculations. Our results corroborate the previously reported bending poison effect and size-dependent buckling behaviors. Under axial compression, current simulations predict a shell-to-column buckling mode transition for BluePNTs with increasing aspect ratios; further compression of BluePNTs with large aspect ratios results in a column-to-shell buckling mode transition. Associated critical buckling strains can be described by the continuum mechanics theory. We also simulated buckling behavior of black phosphorus nanotubes (BlackPNTs) and …


Transparent Actuator Made With Few Layer Graphene Electrode And Dielectric Elastomer, For Variable Focus Lens, Taeseon Hwang, Hyeok-Yong Kwon, Joon-Suk Oh, Jung-Pyo Hong, Seung-Chul Hong, Youngkwan Lee, Hyouk Ryeo Choi, Kwang J. Kim, Mainul Hossain Bhuiya, Jae Do Nam Jan 2013

Transparent Actuator Made With Few Layer Graphene Electrode And Dielectric Elastomer, For Variable Focus Lens, Taeseon Hwang, Hyeok-Yong Kwon, Joon-Suk Oh, Jung-Pyo Hong, Seung-Chul Hong, Youngkwan Lee, Hyouk Ryeo Choi, Kwang J. Kim, Mainul Hossain Bhuiya, Jae Do Nam

Mechanical Engineering Faculty Research

A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed inN-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes.The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in …


Computational Study Of Carbon Nanotubes Under Strain, Jeremy Feliciano, William Wolfs Apr 2011

Computational Study Of Carbon Nanotubes Under Strain, Jeremy Feliciano, William Wolfs

Festival of Communities: UG Symposium (Posters)

We perform computational studies of carbon nanotubes (CNTs) using molecular dynamics simulations to examine the behavior of single-walled (SW) and multiwalled (MW) CNTs under large compressive and bending strains. We study the effects of defects, heating and chirality on their properties. Research on CNTs holds great promise for developing new advanced materials in applications ranging from high-strength composites to next-generation electronics.


Investigation Of Structural And Magnetic Properties Of Iron Clusters Encapsulated In Carbon, Andrew Mohrland, Eunja Kim, Phillipe Weck, Pang Tao, Kenneth Czerwinski Apr 2011

Investigation Of Structural And Magnetic Properties Of Iron Clusters Encapsulated In Carbon, Andrew Mohrland, Eunja Kim, Phillipe Weck, Pang Tao, Kenneth Czerwinski

Festival of Communities: UG Symposium (Posters)

Our goal is to investigate and predict the properties of iron-carbon nanostructures by performing numerical calculations using the density-functional theory. We are interested in which nanostructures are most stable, and in how they are likely to form. We have a particular interest in the magnetic properties of carbon "buckyballs" containing iron particles. These structures have potential for biomedical application, including use in anti-cancer treatment. Lone iron clusters have potential for use as a catalyst designed to reduce vehicle emissions.


Magnetic Sensors For Biodetection, Pranjali Vineet Sneha Deshpande May 2009

Magnetic Sensors For Biodetection, Pranjali Vineet Sneha Deshpande

UNLV Theses, Dissertations, Professional Papers, and Capstones

The objective of thesis is to design magnetic sensor for detection of nanoparticles. Recently integrating the standard laboratory techniques into integrated system on chip is growing attention. Recent development is to combine magnetic markers and magnetoresistive sensors together in magnetic chip. In this thesis two magnetoresistive sensors were studied and designed.

By applying magnetic fields, magnetic nanoparticles can be manipulated on-chip, which can be utilized to pull the molecules to specific binding sites or to test the binding strength and distinguish between specifically and non-specifically bound molecules

Magnetoresistive sensors are compatible with the semiconductor industry which provides electronic signal directly …


Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen Jan 2009

Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen

Mechanical Engineering Faculty Research

A finite-volume code and the SIMPLE scheme are used to study the transport and deposition of nanoparticles in a rotating curved pipe for different angular velocities, Dean numbers, and Schmidt numbers. The results show that when the Schmidt number is small, the nanoparticle distributions are mostly determined by the axial velocity. When the Schmidt number is many orders of magnitude larger than 1, the secondary flow will dominate the nanoparticle distribution. When the pipe corotates, the distribution of nanoparticle mass fraction is similar to that for the stationary case. There is a “hot spot” deposition region near the outside edge …


Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian Jan 2007

Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian

Mechanical Engineering Faculty Research

RedOx-based magnetohydrodynamic MHD[1] flows in three-dimensional microfluidic channels are investigated theoretically with a coupled mathematical model consisting of the Nernst-Planck equations for the concentrations of ionic species, the local electroneutrality condition for the electric potential, and the Navier-Stokes equations for the flow field. A potential difference is externally applied across two planar electrodes positioned along the opposing walls of a microchannel that is filled with a dilute RedOx electrolyte solution, and a Faradaic current transmitted through the solution results. The entire device is positioned under a magnetic field which can be provided by either a permanent magnet or an electromagnet. …