Open Access. Powered by Scholars. Published by Universities.®

Explosives Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

EFP

Articles 1 - 2 of 2

Full-Text Articles in Explosives Engineering

Explosively Formed Projectile Soft-Recovery Force Analysis, Laurin Bookout, Phillip R. Mulligan, Jason Baird Dec 2012

Explosively Formed Projectile Soft-Recovery Force Analysis, Laurin Bookout, Phillip R. Mulligan, Jason Baird

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The design of a soft-recovery system is critical to a researcher's ability to analyze hypervelocity projectiles. The researcher may decide to use one method over another based on several criteria, including whether or not non-deformed projectile measurements are required. This report analyzes the forces two different soft-recovery methods impart on the projectiles collected. Method 1 utilized three polyethylene water barrels placed “end-to-end” horizontally, providing 2.6 meters (9 feet) of water to stop the projectile. Method 2 is a modification of the soft-recovery method utilized in “Soft-Recovery of Explosively Formed Penetrators” by Lambert and Pope. This method utilizes a series of …


The Effects Of The Flyer Plate's Radius Of Curvature On The Performance Of An Explosively Formed Projectile, Phillip R. Mulligan, Jason Baird, Joshua Hoffman Jul 2012

The Effects Of The Flyer Plate's Radius Of Curvature On The Performance Of An Explosively Formed Projectile, Phillip R. Mulligan, Jason Baird, Joshua Hoffman

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

An explosively formed projectile (EFP) is known for its ability to penetrate vehicle armor effectively. Understanding how an EFP’s physical parameters affect its performance is crucial to development of armor capable of defeating such devices. The present study uses two flyer plate radii of curvature to identify the experimental effects of the flyer plate’s radius of curvature on the measured projectile velocity, depth of penetration, and projectile shape. The Gurney equation is an algebraic relationship for estimating the velocity imparted to a metal plate in contact with detonating explosives. The authors of this research used a form of the Gurney …