Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of North Florida

Discipline
Keyword
Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Applied Mechanics

Very High Cycle Fatigue Behavior Of Laser Beam-Powder Bed Fused Inconel 718 Considering The Layer Orientation And Surface Finish Effects, Palmer Frye Jan 2020

Very High Cycle Fatigue Behavior Of Laser Beam-Powder Bed Fused Inconel 718 Considering The Layer Orientation And Surface Finish Effects, Palmer Frye

UNF Graduate Theses and Dissertations

Additive Manufacturing (AM) techniques have recently gained popularity for fabrication of parts used in aerospace applications. Some of these parts may be subjected to cyclic loading at very high frequencies, leading to service life requirements exceeding ten-million cycles (>107 cycles). Therefore, understanding the very high-cycle fatigue (VHCF) behavior of these AM parts is an important step in their design and qualification processes. In this thesis, both high-cycle fatigue (HCF) and VHCF behaviors of Inconel 718, a Ni-base superalloy, manufactured via a Laser Beam-Powder Bed Fusion (LB-PBF) process, are investigated. Uniaxial, fully reversed force-controlled fatigue tests were conducted utilizing …


Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran Jan 2019

Landing-Gear Impact Response: A Non-Linear Finite Element Approach, Tuan H. Tran

UNF Graduate Theses and Dissertations

The primary objective of this research is to formulate a methodology of assessing the maximum impact loading condition that will incur onto an aircraft’s landing gear system via Finite Element Analysis (FEA) and appropriately determining its corresponding structural and impact responses to minimize potential design failures during hard landing (abnormal impact) and shock absorption testing. Both static and dynamic loading condition were closely analyzed, compared, and derived through the Federal Aviation Administration’s (FAA) airworthiness regulations and empirical testing data.

In this research, a nonlinear transient dynamic analysis is developed and established via NASTRAN advanced nonlinear finite element model (FEM) to …


The Effect Of Corrosion Defects On The Failure Of Oil And Gas Transmission Pipelines: A Finite Element Modeling Study, Jennet Orasheva Jan 2017

The Effect Of Corrosion Defects On The Failure Of Oil And Gas Transmission Pipelines: A Finite Element Modeling Study, Jennet Orasheva

UNF Graduate Theses and Dissertations

The transportation of oil and gas and their products through the pipelines is a safe and economically efficient way, when compared with other methods of transportation, such as tankers, railroad, trucks, etc. Although pipelines are usually well-designed, during construction and later in service, pipelines are subjected to a variety of risks. Eventually, some sections may experience corrosion which can affect the integrity of pipeline, which poses a risk in high-pressure operations. Specifically, in pipelines with long history of operation, the size and location of the corrosion defects need to be determined so that pressure levels can be kept at safe …


A Study Of Walkway Safety And Evaluation Of Tribological Test Equipment, Henry Thomas Baker Jan 2014

A Study Of Walkway Safety And Evaluation Of Tribological Test Equipment, Henry Thomas Baker

UNF Graduate Theses and Dissertations

A walkway tribometer measures the coefficient of friction between flooring material and a test foot. The value of the coefficient of friction is an indicator as to whether the flooring surface is slippery and has a propensity to cause slip and falls. This study determined that one style of tribometer, an XL Tribometer, mimics the heel-to-floor interaction of the human heel strike. High speed video footage revealed that the test foot strikes the surface and rotates so that full engagement occurs before sliding thus mimicking the affect of a human ankle. The test foot accelerates forward as would be expected …


Development Of A Predictive Model For Bulk-Flow Through A Porous Polymer Membrane Tube, Aaron Robert Meles Jan 2012

Development Of A Predictive Model For Bulk-Flow Through A Porous Polymer Membrane Tube, Aaron Robert Meles

UNF Graduate Theses and Dissertations

While extensive mathematical and numerical work has been done in terms of modeling the mainstream flow in a tube with porous walls, very little has been done experimentally to confirm these various solutions, and what has been done has focused on large sintered metal tubes used in nuclear power applications. Furthermore, these solutions are quite mathematically complex and arduous to implement. In this work, the mainstream flow through a porous polymer membrane tube is examined and a method for calculating the through-membrane flow rate and axial pressure drop is presented. Two membrane tubes are tested experimentally, and a simple set …