Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Metal-Assisted Etching Of Silicon Molds For Electroforming, Ralu Divan, Dan Rosenthal '14, Karim Ogando, Leonidas E. Ocola, Daniel Rosenmann, Nicolaie Moldovan Sep 2013

Metal-Assisted Etching Of Silicon Molds For Electroforming, Ralu Divan, Dan Rosenthal '14, Karim Ogando, Leonidas E. Ocola, Daniel Rosenmann, Nicolaie Moldovan

Student Publications & Research

Ordered arrays of high-aspect-ratio micro/nanostructures in semiconductors stirred a huge scientific interest due to their unique one-dimensional physical morphology and the associated electrical, mechanical, chemical, optoelectronic, and thermal properties. Metal-assisted chemical etching enables fabrication of such high aspect ratio Si nanostructures with controlled diameter, shape, length, and packing density, but suffers from structure deformation and shape inconsistency due to uncontrolled migration of noble metal structures during etching. Hereby the authors prove that a Ti adhesion layer helps in stabilizing gold structures, preventing their migration on the wafer surface while not impeding the etching. Based on this finding, the authors demonstrate …


In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery Nov 2011

In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, in-situ ellipsometry and electroanalytical investigations of two electrochemical processes are reported: including the formation of anodically grown silicon dioxide and the intercalation of lithium into silicon. Analysis of the ellipsometry data shows that the anodically grown silicon dioxide layer is uniform and has similar properties as thermally grown silicon dioxide. The lithium-ion intercalation data reveals non-uniform thin film formation, which requires further studies and development of appropriate ellipsometric optical models.

Advisers: Eva Schubert and Mathias Schubert


Valley Splitting In Si Quantum Dots Embedded In Sige, Srikant Srinivasan Sep 2008

Valley Splitting In Si Quantum Dots Embedded In Sige, Srikant Srinivasan

Srikant Srinivasan

We examine energy spectra of Si quantum dots embedded in Si0.75Ge0.25 buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley splitting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses ≤ 6 nm, valley splitting is found to be >150 μeV. Using the unique advantage of atomistic calculations, we analyze the effect of buffer disorder on valley splitting. Disorder in the buffer leads to the suppression of valley splitting by a factor of 2.5; the splitting fluctuates with ≈ 20 μeV …


Investigation Of Nanoporous Thin-Film Alumina Templates, Biswajit Das May 2004

Investigation Of Nanoporous Thin-Film Alumina Templates, Biswajit Das

Electrical & Computer Engineering Faculty Research

This paper presents the results of a systematic study of the fabrication of thin-film alumina templates on silicon and other substrates. Such templates are of significant interest for the low-cost implementation of semiconductor and metal nanostructure arrays. In addition, thin-film alumina templates on silicon have the potential for nanostructure integration with silicon electronics. Formation of thin-film alumina templates on silicon substrates was investigated under different fabrication conditions, and the dependence of pore morphology and pore formation rate on process parameters was evaluated. In addition, process conditions for improved pore size distribution and periodicity were determined. The template/silicon interface, important for …