Open Access. Powered by Scholars. Published by Universities.®

Structural Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 43

Full-Text Articles in Structural Engineering

Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik Dec 2023

Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik

Publications

A reinforced carbon composite can include a carbon sub­strate and a metal organic framework bonded to the carbon substrate. For example, a reinforced carbon composite can include a first layer, a second layer, and a resin adhered to the first layer and the second layer. The first layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate. The second layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate.


Augmenting External Surface Pressures’ Predictions On Isolated Low-Rise Buildings Using Cfd Simulations, Md Faiaz Khaled, Aly Mousaad Aly Oct 2023

Augmenting External Surface Pressures’ Predictions On Isolated Low-Rise Buildings Using Cfd Simulations, Md Faiaz Khaled, Aly Mousaad Aly

Faculty Publications

The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an …


Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi Dec 2022

Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi

Civil and Environmental Engineering Theses and Dissertations

Various seismic and wind engineering designs and retrofit strategies have been in development to meet structures' proper and safe operation during earthquake and wind excitation. One such method is the addition of fluid and particle dampers, such as sand dampers, in an effort to reduce excessive and dangerous displacements of structures. The present study implements the discrete element method (DEM) to assess the performance of a pressurized sand damper (PSD) and characterize the dissipated energy under cyclic loading. The idea of a PSD is to exploit the increase in shearing resistance of sand under external pressure and the associated ability …


Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik Dec 2022

Metal Organic Framework Modifications Of Structural Fibers, Marwan Al-Haik

Publications

A reinforced carbon composite can include a carbon sub­strate and a metal organic framework bonded to the carbon substrate. For example, a reinforced carbon composite can include a first layer, a second layer, and a resin adhered to the first layer and the second layer. The first layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate. The second layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate.


Structural Dynamics Of Awt-27 Wind Turbine Blade, Amr Ismaiel Jun 2022

Structural Dynamics Of Awt-27 Wind Turbine Blade, Amr Ismaiel

Future Engineering Journal

Wind energy is one of the world’s current leading renewable energy resources. One of the major aspects of studying wind turbines is the structural dynamics for the turbine structure including blades and support structure. In the current work, the blades of the Advanced Wind Turbine (AWT-27) are investigated in a dynamic approach. Different wind fields have been generated for the study to provide different Design Load Conditions (DLCs). Three laminar wind velocities of 5 m/s, 12 m/s, and 17 m/s were simulated. Turbulent wind flow fields have also been generated at the three standard classes A, B and C of …


A Computational Fluid Dynamics-Based Surrogate Wind Turbine Blade Aerodynamic Model For Hybrid Simulation, Eric Lalonde Feb 2022

A Computational Fluid Dynamics-Based Surrogate Wind Turbine Blade Aerodynamic Model For Hybrid Simulation, Eric Lalonde

Electronic Thesis and Dissertation Repository

Hybrid simulation (HS) is a promising technique for studying wind turbines due to the presence of scaling errors in wind tunnel testing. However, HS of wind-loaded structures is limited by the current practice of using lower-accuracy, "pre-calculated" aerodynamic loads, which uncouple the aerodynamic loading from the structural response. This thesis presents six stand-alone studies that collectively build towards a novel HS framework that employs a computational fluid dynamics (CFD) based surrogate model to generate higher-accuracy aerodynamic loads within the HS loop. An experimentally-validated residential wind turbine model equipped with an external damping system was used to illustrate the proposed framework. …


On The Computational Efficiency Of Les And Hybrid Rans-Les Models In Building Aerodynamics, Aly Mousaad Aly, Faiaz Khaled May 2021

On The Computational Efficiency Of Les And Hybrid Rans-Les Models In Building Aerodynamics, Aly Mousaad Aly, Faiaz Khaled

Faculty Publications

Large-eddy simulation (LES) has proven to offer superior accuracy in regards to predicting surface pressures compared to the Reynolds-averaged Navier Stokes (RANS) models. However, the primary impediment is the high computational cost associated with LES. The authors attempt to investigate the computational cost and accuracy by employing different sub-grid scale (SGS) models in LES and hybrid RANS-LES models. One of the prerequisites of accurate pressure estimations is to ensure a horizontally homogeneous empty computational domain. This study aims to compare the computational competence qualitatively and quantitatively using an empty domain in regards to the ability to maintain horizontal homogeneity. The …


On The Computational Efficiency Of Les And Hybrid Rans-Les Models In Building Aerodynamics, Faiaz Khaled, Aly Mousaad Aly May 2021

On The Computational Efficiency Of Les And Hybrid Rans-Les Models In Building Aerodynamics, Faiaz Khaled, Aly Mousaad Aly

Faculty Publications

No abstract provided.


Implication Of City Growth On Wind-Induced Loads For Cladding And Structural Design, Hadil M. Abdallah Apr 2021

Implication Of City Growth On Wind-Induced Loads For Cladding And Structural Design, Hadil M. Abdallah

Electronic Thesis and Dissertation Repository

As cities grow, the urban topology changes in density resulting in continuous variations in wind flow. The interaction of flow with this changing surrounding environment drives the aerodynamics to become more complex and varying, subjecting the building to significant changes in wind-induced-loads both on structural and non-structural elements. In this study, a series of boundary layer wind tunnel tests are conducted to investigate the impact of city growth on cladding and structural loading by using a typical tall building adopted from the Commonwealth Advisory Aeronautical Council (CAARC) building model. The city growth is represented by five different generic surrounding configurations, …


Joint Wind And Ice Effects On Transmission Lines In Mountainous Terrain, Daniel Davalos Arriaga Nov 2020

Joint Wind And Ice Effects On Transmission Lines In Mountainous Terrain, Daniel Davalos Arriaga

Electronic Thesis and Dissertation Repository

Atmospheric icing on mountainous terrain can produce catastrophic damages to transmission lines when incoming particles impinge and accrete on the cable surface of the system. The first challenge in wind-ice loading is determining joint statistics of wind and ice accretion on transmission lines. This study analyzes the weather characteristics for a specific site of study using 15 years of historical data to use as inputs for ice accretion modeling. The joint wind and ice hazard is characterized by simulating 500 years of icing events from the fitted probability distributions of ice accretion and wind on ice velocities. The second challenge …


Peak Pressures On Low Rise Buildings: Cfd With Les Versus Full Scale And Wind Tunnel Measurements, Aly Mousaad Aly, Hamzeh Gol-Zaroudi Jan 2020

Peak Pressures On Low Rise Buildings: Cfd With Les Versus Full Scale And Wind Tunnel Measurements, Aly Mousaad Aly, Hamzeh Gol-Zaroudi

Faculty Publications

This paper focuses on the processes of wind flow in the atmospheric boundary layer, to produce realistic full-scale pressures for the design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g. COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Development, Training, Education, And Implementation Of Low-Cost Sensing Technologies For Bridge Structural Health Monitoring (Shm), Fernando Moreu, Chris Lippitt, Dilendra Maharjan, Marlon Aguero, Roya Nasimi Nov 2018

Development, Training, Education, And Implementation Of Low-Cost Sensing Technologies For Bridge Structural Health Monitoring (Shm), Fernando Moreu, Chris Lippitt, Dilendra Maharjan, Marlon Aguero, Roya Nasimi

Publications

Transportation infrastructure needs continuous monitoring. However, traditional inspections cost money and are conducted visually. New technologies for bridge monitoring are expensive and complex. This project involved developing cost-effective sensor technologies that can be applied towards the maintenance of railroad bridges by recording reference-free transverse displacement. More specifically, this project developed new applications of new technologies (Arduino, wireless smart sensors, drones, Hololens) and promoted workforce development with an emphasis on outreach of high-school students. This project was carried out in three main phases: (1) development and validation of technologies, (2) education and outreach to students, and (3) outreach to industry consisting …


The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori Jun 2018

Novel Structural Health Monitoring And Damage Detection Approaches For Composite And Metallic Structures, Shervin Tashakori

FIU Electronic Theses and Dissertations

Mechanical durability of the structures should be continuously monitored during their operation. Structural health monitoring (SHM) techniques are typically used for gathering the information which can be used for evaluating the current condition of a structure regarding the existence, location, and severity of the damage. Damage can occur in a structure after long-term operating under service loads or due to incidents. By detection of these defects at the early stages of their growth and nucleation, it would be possible to not only improve the safety of the structure but also reduce the operating costs. The main goal of this dissertation …


Investigating Scale Effects On Analytical Methods Of Predicting Peak Wind Loads On Buildings, Mohammadtaghi Moravej Jun 2018

Investigating Scale Effects On Analytical Methods Of Predicting Peak Wind Loads On Buildings, Mohammadtaghi Moravej

FIU Electronic Theses and Dissertations

Large-scale testing of low-rise buildings or components of tall buildings is essential as it provides more representative information about the realistic wind effects than the typical small scale studies, but as the model size increases, relatively less large-scale turbulence in the upcoming flow can be generated. This results in a turbulence power spectrum lacking low-frequency turbulence content. This deficiency is known to have significant effects on the estimated peak wind loads.

To overcome these limitations, the method of Partial Turbulence Simulation (PTS) has been developed recently in the FIU Wall of Wind lab to analytically compensate for the effects of …


Highly Vented Truss Wall Honeycomb Structures, David J. Sypeck Dec 2017

Highly Vented Truss Wall Honeycomb Structures, David J. Sypeck

Publications

A vented honeycomb structure with a plurality of honey­comb cells arranged in a hierarchical order and having a plurality of truss walls, each truss wall including a plurality of members. The vented honeycomb structure is fabricated by joining a plurality of sheets of trusses using any one of an expansion, a corrugation, and a slotting process. Fabri­cation can also occur by deposition, casting, additive, extru­sion, or aligning and joining methods. The honeycomb cells, truss walls, truss wall openings, and truss wall members can be functionally graded.


Assessment Of Dynamic Effect Of Transmission Line Conductor Longitudinal Reaction Due To Downburst Loading, Ibrahim Ibrahim Dec 2017

Assessment Of Dynamic Effect Of Transmission Line Conductor Longitudinal Reaction Due To Downburst Loading, Ibrahim Ibrahim

Electronic Thesis and Dissertation Repository

Due to the locality and non-stationary nature of downburst wind loading events, their effect on the structural response of transmission line structures is of special nature that differs from conventional atmospheric boundary layer wind loading. Acknowledging such difference, the current thesis aims to quantify the dynamic effect associated with downburst loading on transmission line systems. To achieve that, several steps had to be realized, including experimentally verifying the numerical model used for analysis using wind field that was generated using computational fluid dynamics. The verified model was extended from model scale to full scale, where the wind field used for …


The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco Aug 2017

The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco

Libraries' Newsletters

No abstract provided.


Structural Behavior Of Inflatable, Reinforced, Braided, Tubular Members, Joshua Clapp Aug 2017

Structural Behavior Of Inflatable, Reinforced, Braided, Tubular Members, Joshua Clapp

Electronic Theses and Dissertations

The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) system being developed by the National Aeronautics and Space Administration (NASA) is an inflatable structure composed of multiple, concentric, pressurized tori, load straps, and a thermal protection system. The HIAD overcomes limitations inherent with the use of rigid decelerators since the deployed diameter is much larger than the packed size, which makes it an enabling technology for new opportunities in space exploration. The HIAD is designed to decelerate and protect spacecraft during atmospheric re-entry. The objective of this research was to improve understanding of structural behavior of HIAD components through material testing, structural testing …


Hazard Assessment Of Meteoroid Impact For The Design Of Lunar Habitats, Herta Paola Montoya, Shirley Dyke, Julio A. Ramirez, Antonio Bobet, H. Jay Melosh, Daniel Gomez Aug 2017

Hazard Assessment Of Meteoroid Impact For The Design Of Lunar Habitats, Herta Paola Montoya, Shirley Dyke, Julio A. Ramirez, Antonio Bobet, H. Jay Melosh, Daniel Gomez

The Summer Undergraduate Research Fellowship (SURF) Symposium

The design of self-sustaining lunar habitats is a challenge primarily due to the Moon’s lack of atmospheric protection and hazardous environment. To assure safe habitats that will lead to further lunar and space exploration, it is necessary to assess the different hazards faced on the Moon such as meteoroid impacts, extreme temperatures, and radiation. In particular, meteoroids pose a risk to lunar structures due to their high frequency of occurrence and hypervelocity impact. Continuous meteoroid impacts can harm structural elements and vital equipment compromising the well-being of lunar inhabitants. This study is focused on the hazard conceptualization and quantification of …


The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney Feb 2017

The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney

Master's Theses

While composite structures exhibit exceptional strength and weight saving possibilities for engineering applications, sometimes their overall cost and/or material performance can limit their usage when compared to conventional structural materials. Meanwhile ‘biocomposites’, composite structures consisting of natural fibers (i.e. bamboo fibers), display higher cost efficiency and unique structural benefits such as ‘sustainability’. This analysis will determine if the integration of these two different types of composites are beneficial to the overall structure. Specifically, the structure will consist of a one internal bamboo veneer biocomposite ply; and two external carbon fiber weave composite plies surrounding the bamboo biocomposite. To acquire results …


Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins Jan 2017

Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins

Theses and Dissertations--Civil Engineering

The Analytical Strip Method (ASM) for the analysis of thin cylindrical shells is presented in this dissertation. The system of three governing differential equations for the cylindrical shell are reduced to a single eighth order partial differential equation (PDE) in terms of a potential function. The PDE is solved as a single series form of the potential function, from which the displacement and force quantities are determined. The solution is applicable to isotropic, generally orthotropic, and laminated shells. Cylinders may have simply supported edges, clamped edges, free edges, or edges supported by isotropic beams. The cylindrical shell can be stiffened …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood Aug 2016

Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood

Doctoral Dissertations

An estimate of the United States wind potential conducted in 2011 found that the energy available at an altitude of 80 meters is approximately triple the wind energy available 50 meters above ground. In 2012, 43% of all new electricity generation installed in the U.S. (13.1 GW) came from wind power. The majority of this power, 79%, comes from large utility scale turbines that are being manufactured at unprecedented sizes. Existing wind plants operate with a capacity factor of only approximately 30%. Measurements have shown that the turbulent wake of a turbine persists for many rotor diameters, inducing increased vibration …


Structural Health Monitoring Of Composite Overwrapped Pressure Vessels, Luca Letizia Jan 2016

Structural Health Monitoring Of Composite Overwrapped Pressure Vessels, Luca Letizia

Honors Undergraduate Theses

This work is focusing to study the structural behavior of Composite Overwrapped Pressure Vessels (COPVs). These COPVs are found in many engineering applications. In the aerospace field, they are installed onto spaceships and aid the reorientation of the spacecraft in very far and airless, therefore frictionless, orbits to save energy and fuel. The intent of this research is to analyze the difference in performance of both perfectly intact and purposely damaged tanks. Understanding both the source and location of a structural fault will help NASA engineers predict the performance of COPVs subject to similar conditions, which could prevent failures of …


Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian Jan 2015

Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian

Theses and Dissertations--Mechanical Engineering

NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing.

Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, …


Wind And Thermal Effects On Ground Mounted Photovoltaic (Pv) Panels, Chowdhury Mohammad Jubayer Dec 2014

Wind And Thermal Effects On Ground Mounted Photovoltaic (Pv) Panels, Chowdhury Mohammad Jubayer

Electronic Thesis and Dissertation Repository

A combination of Computational Fluid Dynamics (CFD) simulations and wind tunnel experiments are carried out to investigate the effects of wind on the aerodynamic loading and heat transfer of a ground mounted stand-alone photovoltaic (PV) panel with tilt angle of 25o in open country atmospheric boundary layer. Several azimuthal wind directions are considered: Southern 0o, Southwest 45o, Northwest 135o and Northern 180o. Three dimensional Reynolds-Averaged Navier-Stokes (RANS) approaches with an unsteady solver using Shear Stress Transport (SST) k-ω turbulence closure are employed for the CFD simulations, whereas Particle Image Velocimetry (PIV) and …


Response Of Transmission Line Conductors Under Downburst Wind, Haitham Aboshosha Aug 2014

Response Of Transmission Line Conductors Under Downburst Wind, Haitham Aboshosha

Electronic Thesis and Dissertation Repository

Electricity is transmitted by Transmission Lines (TLs) from the source of production to the distribution system and then to the end consumers. Failure of a TL can lead to significant economic losses and to negative social consequences resulting from the interruption of power. High Intensity Winds (HIW), in the form of downbursts and tornadoes, are believed to be responsible for more than 80% of the weather-related failure of TLs around the world. The studies reported in this thesis are part of an ongoing extensive research program at Western University focusing on the response of TLs under HIW. Previous investigations conducted …


Post-Failure Capacity Of Built-Up Steel Members, Matthew H. Hebdon Mar 2014

Post-Failure Capacity Of Built-Up Steel Members, Matthew H. Hebdon

Purdue Road School

Mechanically fastened built-up steel members have long been known to possess internal member redundancy and, as a result, multiple load paths which can be exploited to increase their functional life. Internal redundancy provides the ability to resist total member failure in the event of a fracture of an individual component. However, there is little experimental data in the literature regarding post-fracture capacity in terms of strength and subsequent fatigue life. The experimental study currently underway will provide needed information on parameters that affect the ability of built- up members to arrest a fracture as well as the available remaining fatigue …