Open Access. Powered by Scholars. Published by Universities.®

Other Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Graduate Theses, Dissertations, and Problem Reports

Articles 1 - 14 of 14

Full-Text Articles in Other Chemical Engineering

Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas, Michael A. Mathews Jr. Jan 2023

Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas, Michael A. Mathews Jr.

Graduate Theses, Dissertations, and Problem Reports

For over a decade, the Stinespring laboratory has investigated scalable, plasma assisted synthesis (PAS) methods for the growth of graphene films on silicon carbide (SiC). These typically utilized CF4-based inductively coupled plasma (ICP) with reactive ion etching (RIE) to selectively etch silicon from the SiC lattice. This yielded a halogenated carbon-rich surface layer which was then annealed to produce the graphene layers. The thickness of the films was controlled by the plasma parameters, and overall, the process was readily scalable to the diameter of the SiC wafer.

The PAS process reproducibly yielded two- to three-layer thick graphene films …


Microwave-Assisted Ammonia Synthesis Over Cs-Ru/Ceo2 Catalyst, Alazar Kesete Araia Jan 2023

Microwave-Assisted Ammonia Synthesis Over Cs-Ru/Ceo2 Catalyst, Alazar Kesete Araia

Graduate Theses, Dissertations, and Problem Reports

Ammonia synthesis is one of the greatest innovations of the 20th century with extensive applications from fertilizers to intermediates for nitrogen-containing chemicals and pharmaceuticals. Annually, more than 242 million tons of ammonia is produced globally, supporting approximately 27% of the world’s population. One of the fast-growing applications for ammonia is as H2 energy carrier due to its high energy storage capacity, considered to be a decarbonized energy source. The low volumetric energy density and incompressibility makes Hydrogen a non-preferable energy carrier; an alternative carrier becomes a requirement. Ammonia possesses unique property as an energy-dense carrier to store and …


Advanced Process Modeling And Optimization Of Amine-Based Carbon Capture Process, Paul Jide Terhemba Akula Jan 2022

Advanced Process Modeling And Optimization Of Amine-Based Carbon Capture Process, Paul Jide Terhemba Akula

Graduate Theses, Dissertations, and Problem Reports

With the rise of carbondioxide (CO2) concentration in the atmosphere to more than 400 parts per million (ppm), research efforts have been focused on achieving net-zero carbon emission technologies. Post-combustion CO2 capture (PCC) is a key strategy in reducing CO2 emissions. Amine-based CO2 capture is the baseline technology for retrofitting existing power stations. However, the integration of amine-based PCC technology with power plants to reduce greenhouse gas emissions incurs a high energy penalty, decreasing a powerplant’s efficiency by about 23 percentage points. Understanding the capture plant dynamics plays an important role in its technical and economic performance. Rigorous models are …


Microwave-Assisted Natural Gas Conversion To Value-Added Chemicals, Xinwei Bai Jan 2021

Microwave-Assisted Natural Gas Conversion To Value-Added Chemicals, Xinwei Bai

Graduate Theses, Dissertations, and Problem Reports

Stranded gas is a raw gas mixture of volatile hydrocarbons where the main composition is methane. The producers flare the stranded gas at the site because the cost of collecting and transporting the gas is higher than the value of the gas itself. To reduce the waste of this natural resource, it is worthwhile to utilize the on-site stranded natural gas as feedstock to produce value-added chemicals without emitting greenhouse gas. Direct natural gas conversion process is more desirable because of lower capital investment. Methane and ethane, the two major components of natural gas, are very stable molecules that usually …


Multimodel Operability Framework For Design Of Modular And Intensified Energy Systems, Vitor Gazzaneo Jan 2021

Multimodel Operability Framework For Design Of Modular And Intensified Energy Systems, Vitor Gazzaneo

Graduate Theses, Dissertations, and Problem Reports

In this dissertation, a novel operability framework is introduced for the process design of modular and intensified energy systems that are challenged by complexity and highly constrained environments. Previously developed process operability approaches are reviewed and further developed in terms of theory, application, and software infrastructure. An optimization-based multilayer operability framework is introduced for process design of nonlinear energy systems. In the first layer of this framework, a mixed-integer linear programming (MILP)-based iterative algorithm considers the minimization of footprint and achievement of process intensification targets. Then, in the second layer, an operability analysis is performed to incorporate key features of …


Process Modeling And Techno-Economic Analysis Of Micro- Encapsulated Carbon Sorbents (Mecs) For Co2 Capture In A Fixed Bed And Moving Bed Reactors, Goutham Kotamreddy Jan 2021

Process Modeling And Techno-Economic Analysis Of Micro- Encapsulated Carbon Sorbents (Mecs) For Co2 Capture In A Fixed Bed And Moving Bed Reactors, Goutham Kotamreddy

Graduate Theses, Dissertations, and Problem Reports

Carbon capture, utilization, and storage (CCUS) is seen as a suite of technologies to curb the carbon dioxide emissions from the atmosphere and plays a crucial role to meet the net zero emissions target for many countries by 2050. One of the major sources for CO2 emissions is combustion of fossil fuels. Various innovative capture technologies are being explored because the state-of-the-art monoethanolamine (MEA) based carbon capture technology has drawbacks such as corrosion, energy penalty. There are several potential solvents that have lower energy penalty, but they are highly viscous or may turn into solid phase in the absorber …


Process Modeling And Techno-Economic Analysis Of Thermo-Catalytic Dimethyl Ether Synthesis And Microwave-Based Aromatics Production Technologies From Shale Gas, Chirag Mevawala Jan 2020

Process Modeling And Techno-Economic Analysis Of Thermo-Catalytic Dimethyl Ether Synthesis And Microwave-Based Aromatics Production Technologies From Shale Gas, Chirag Mevawala

Graduate Theses, Dissertations, and Problem Reports

Production of dimethyl ether (DME) and direct non-oxidative methane dehydroaromatization (DHA) to aromatics via conventional and microwave (MW)-assisted processes are investigated in this research. Plant-wide models of the shale gas to DME process with integrated CO2 capture via direct and indirect synthesis routes have been developed. Optimal parameter estimation, and model validation are undertaken for various sections of the process including the pre-reforming reactor, auto-thermal reforming reactor, DME synthesis reactors, CO2 capture units and separation sections. A novel DME separation process has been developed for efficient separation of DME, syngas, and CO2. Plant-wide techno-economic optimization is …


Next Generation Of Applications Of Metal-Organic Frameworks For Energy And Environmental Sustainability, Qian Liu Jan 2020

Next Generation Of Applications Of Metal-Organic Frameworks For Energy And Environmental Sustainability, Qian Liu

Graduate Theses, Dissertations, and Problem Reports

My PhD work aimed at using Metal-organic frameworks (MOFs) for mitigating the environmental issues and energy crisis associated with anthropogenic activities. Specifically, we developed robust platforms and/ or systems using MOF as “scaffolds” to allow for model pollutant detection and CO2 sequestration and benign transformation respectively.

First, I detailed how photocatalytic properties of 2,5-furandicarbocylic acid (FDCA) in its alone and its MOF- integrated form (MIL-160) were used for the first time for the reduction of Ag+ at room conditions. Such photocatalytic activities could then be used in user-designed hybrids (i.e., Ag/MIL-160) to form sensorial platforms for prevalent phenol …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …


Elucidating The Properties And Mechanism For Cellulose Dissolution In Tetrabutylphosphonium-Based Ionic Liquids Using High Concentrations Of Water, Brad Crawford Jan 2020

Elucidating The Properties And Mechanism For Cellulose Dissolution In Tetrabutylphosphonium-Based Ionic Liquids Using High Concentrations Of Water, Brad Crawford

Graduate Theses, Dissertations, and Problem Reports

The structural, transport, and thermodynamic properties related to cellulose dissolution by tetrabutylphosphonium chloride (TBPCl) and tetrabutylphosphonium hydroxide (TBPH)-water mixtures have been calculated via molecular dynamics simulations. For both ionic liquid (IL)-water solutions, water veins begin to form between the TBPs interlocking arms at 80 mol % water, opening a pathway for the diffusion of the anions, cations, and water. The water veins allow for a diffusion regime shift in the concentration region from 80 to 92.5 mol % water, providing a higher probability of solvent interaction with the dissolving cellulose strand. The hydrogen bonding was compared between small and large …


Review Of Established And Emergent Methods For The Production Of C4 Olefins, James Matthew Koval Jan 2020

Review Of Established And Emergent Methods For The Production Of C4 Olefins, James Matthew Koval

Graduate Theses, Dissertations, and Problem Reports

Current production of C4 olefins is dominated by naphtha cracking and butane dehydrogenation, but significant research interest is developing in alternate feedstocks due to an abundance of inexpensive natural gas and bioethanol. The current C4 olefin production methods are costly, make use of already-depleted petroleum resources, and are often hazardous to workers, which forms the impetus for investigation into alternative methods and assessment of their viability as a future means of olefin production. Methods of natural gas conversion to higher order hydrocarbons are discussed, including Fischer-Tropsch synthesis and oxidative methane coupling, each of which could form the first …


Modeling Of Rotary Packed Beds For Reactive And Non-Reactive Systems, Chinyere Evangeline Ezeobinwune Jan 2020

Modeling Of Rotary Packed Beds For Reactive And Non-Reactive Systems, Chinyere Evangeline Ezeobinwune

Graduate Theses, Dissertations, and Problem Reports

Rotary packed beds (RPBs) are used in a wide range of reactive and non-reactive applications. In this research, a 2-d, first-principles, dynamic model of a non-reactive RPB that is used for heat exchange between the outgoing flue gas from a power plant and the incoming air to the boiler/pulverizer of the power plant is developed. A 2-d, first-principles model of a reactive RPB is developed where a functionalized metal-organic framework (MOF) is used for CO2 capture.

For the non-reactive system, a Ljungstrom-type air preheater (APH) is considered. Existing models for these rotating heat exchangers are typically 1-d. There are …


New Method Of Manufacturing Carbon Foam, Matthew D. Artimez Jan 2019

New Method Of Manufacturing Carbon Foam, Matthew D. Artimez

Graduate Theses, Dissertations, and Problem Reports

Carbon foam is a product that has some unique features. Carbon foam is a light weight material that has a high crush strength. It is electrically conductive, but because it is composed of air space between the tendrils, it is not a thermal conductor. Since it contains no volatile content, it is noncombustible. All these features allow carbon foam to have many modern applications. Currently, there are only three methods of producing carbon foam, and all three are not cost- efficient enough to meet the demand of potential new markets.

In this thesis, a new procedure of producing carbon foam …


Design Of Geothermal District Heating And Cooling System For The West Virginia University, Oluwasogo Bolaji Alonge Jan 2019

Design Of Geothermal District Heating And Cooling System For The West Virginia University, Oluwasogo Bolaji Alonge

Graduate Theses, Dissertations, and Problem Reports

Recent Appalachian Basin Geothermal Play Fairway Analysis estimated elevated heat flows in north-central West Virginia. This region provides an optimal and unique combination of elevated temperatures and flow necessary for geothermal development along with year-round surface demand for heating and cooling on the campus. Therefore, West Virginia University’s (WVU’s) Morgantown campus has been identified as a prime location in the eastern United States for the development of a geothermal direct-use heating and cooling application. The objective of this study was to perform a feasibility analysis for the development of a geothermal district heating and cooling (GDHC) system for WVU campus …