Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Renewable energy

Mechanical Engineering

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 45

Full-Text Articles in Engineering

A Low-Cost Secure Iot Mechanism For Monitoring And Controlling Polygeneration Microgrids, Josué Martínez-Martínez, Diego Aponte-Roa, Idalides Vergara-Laurens, Wayne Weaver Dec 2020

A Low-Cost Secure Iot Mechanism For Monitoring And Controlling Polygeneration Microgrids, Josué Martínez-Martínez, Diego Aponte-Roa, Idalides Vergara-Laurens, Wayne Weaver

Michigan Tech Publications

The use of Internet-connected devices at homes has increased to monitor energy consumption. Furthermore, renewable energy sources have also increased, reducing electricity bills. However, the high cost of the equipment limits the use of these technologies. This paper presents a low-cost secured-distributed Internet of Things (IoT) system to monitor and control devices connected in a polygeneration microgrid, as a combined power system for local loads with renewable sources. The proposed mechanism includes a Wireless Sensor Actuator Networked Control System that links network nodes using the IEEE 802.15.4 standard. The Internet communication enables the monitor and control of devices ...


Insight Into Tribological Problems Of Green Ship And Corresponding Research Progresses, Yuwei Sun, Xinping Yan, Chengqing Yuan, Xiuqin Bai Oct 2020

Insight Into Tribological Problems Of Green Ship And Corresponding Research Progresses, Yuwei Sun, Xinping Yan, Chengqing Yuan, Xiuqin Bai

Friction

The so-called “green ship” is being regarded as a potential solution to the problems that the shipping industry faces, such as energy conservation and environmental protection. Some new features, such as integrated renewable energy application, biomimetic materials, and antifriction and wear resistant coating have been accepted as the typical characteristics of a green ship, but the tribology problems involved in these domains have not been precisely redefined yet. Further, the related research work is generally focused on the technology or material itself, but not on the integration of the applicable object or green ship, marine environment, and tribological systematical analysis ...


Renewable Energy Based Agricultural Robot, R. Krishna, J.Enoch Richbert, J. Jeyakaran, R. Kirubhakaran, S. Dhinakar Sep 2020

Renewable Energy Based Agricultural Robot, R. Krishna, J.Enoch Richbert, J. Jeyakaran, R. Kirubhakaran, S. Dhinakar

International Journal of Mechanical and Industrial Engineering

This paper deals with how to mechanize agricultural process through electronic and embedded components. The aim of the paper is to elaborately explain the processes done by the so called robot.


New Method To Harness More Wind Energy, M. Z. I. Sajid, K. Hema Chandra Reddy, E. L Nagesh Aug 2020

New Method To Harness More Wind Energy, M. Z. I. Sajid, K. Hema Chandra Reddy, E. L Nagesh

International Journal of Applied Research in Mechanical Engineering

A new and novel method to harness more wind energy has been designed Details of the experimental results and theoretical explanation is presented in the paper. The simplicity and economic viability of the method is expected to be a boon in converting poor windy sites to usable ones and to harness more energy at the existing windmill sites.


Potential Energy Generation From Agricultural Residue In Indonesia, Adrian Rizqi Irhamna Aug 2020

Potential Energy Generation From Agricultural Residue In Indonesia, Adrian Rizqi Irhamna

English Language Institute

Indonesia has great potential of biomass sources from their agricultural residue, which can potentially be used for alternative energy generation. This preliminary research explores the most suitable technology for energy generation from agricultural residue and its challenge for application in Indonesia. The study showed that biomass utilization via the direct combustion process is recommended for energy generation. It is also reported that the pretreatment process of drying and washing, are required to increase the fuel quality and plant efficiency.


Applying Renewable Energies Against Climate Change: Solar Photovoltaic (Pv) Energy, Juan Jose Estribi Aug 2020

Applying Renewable Energies Against Climate Change: Solar Photovoltaic (Pv) Energy, Juan Jose Estribi

English Language Institute

In recent years, more efforts towards fighting climate change have been done. As a direct response, research and technology have offered several insights regarding the specific causes, effects, and even possible solutions for resolving this global issue. Among these solutions, renewable energies and their potential contributions as clean energy sources can be assessed as feasible options for the energy transformation through the decarbonization process of the energy industry. This poster is mainly focused on solar photovoltaic (PV) energy and its great potential as a renewable energy by making a brief assessment of some important aspects such as resource availability, its ...


Waste To Energy: Solid Fuel Production From Biogas Plant Digestate And Sewage Sludge By Torrefaction-Process Kinetics, Fuel Properties, And Energy Balance, Kacper Świechowski, Martyna Hnat, Paweł Stępień, Sylwia Stegenta-Dąbrowska, Szymon Kugler, Jacek A. Koziel, Andrzej Białowiec Jun 2020

Waste To Energy: Solid Fuel Production From Biogas Plant Digestate And Sewage Sludge By Torrefaction-Process Kinetics, Fuel Properties, And Energy Balance, Kacper Świechowski, Martyna Hnat, Paweł Stępień, Sylwia Stegenta-Dąbrowska, Szymon Kugler, Jacek A. Koziel, Andrzej Białowiec

Agricultural and Biosystems Engineering Publications

Sustainable solutions are needed to manage increased energy demand and waste generation. Renewable energy production from abundant sewage sludge (SS) and digestate (D) from biogas is feasible. Concerns about feedstock contamination (heavy metals, pharmaceuticals, antibiotics, and antibiotic-resistant bacteria) in SS and D limits the use (e.g., agricultural) of these carbon-rich resources. Low temperature thermal conversion that results in carbonized solid fuel (CSF) has been proposed as sustainable waste utilization. The aim of the research was to investigate the feasibility of CSF production from SS and D via torrefaction. The CSF was produced at 200~300 °C (interval of 20 ...


An Assessment Of Renewable Energy Technology Implementation In Storrs, Connecticut: Emissions Reduction And Feasibility Of A Microgrid System At Uconn, Sophie Macdonald May 2020

An Assessment Of Renewable Energy Technology Implementation In Storrs, Connecticut: Emissions Reduction And Feasibility Of A Microgrid System At Uconn, Sophie Macdonald

Honors Scholar Theses

The purpose of this project is to design a clean energy-sourced microgrid for UConn’s main campus that would reduce the university’s energy emissions while remaining within the geographic boundaries of viable UConn-owned land. Economic cost was not considered in this analysis; instead, emissions and space constraints were the optimized measures of value and feasibility. Sources of energy that were considered include photovoltaics (PV), wind turbines, hydrokinetic systems, and fuel cells. Energy storage capacity was included in the analysis as well. The overall system was optimized first by ignoring space constraints and for a minimum of 10% reduction from ...


Electrification Of Domestic Hot Water To Aid The Integration Of Renewable Energy In The California Grid, Alejandro Cervantes Jan 2020

Electrification Of Domestic Hot Water To Aid The Integration Of Renewable Energy In The California Grid, Alejandro Cervantes

HSU theses and projects

Water heating in residential buildings, also known as domestic hot water (DHW), is the third largest use of energy after appliances and space conditioning. About 90% of the residential buildings in the state use natural gas fueled water heaters, 6% use electricity, and a small percent use liquefied petroleum gas (LPG) or solar water heaters. The current energy use associated with residential water heating is small relative to the total amount of energy consumption in the residential building sector, but it is still a contributor of greenhouse gas (GHG) emissions. Improving hot water systems can be beneficial for bill customer ...


Internet Of Things In Sustainable Energy Systems, Abdul Salam Jan 2020

Internet Of Things In Sustainable Energy Systems, Abdul Salam

Faculty Publications

Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy ...


The Effects Of Scale On Granular Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur Apr 2019

The Effects Of Scale On Granular Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur

Breanna L. Marmur

Granular mixing processes are important to many industries including the pharmaceutical, agricultural, and biotechnology industries. These processes often require both a high degree of homogeneity and a high degree of customizability. As granular mixing processes are so widely employed, a thorough understanding of the mixing dynamics is necessary to understand and control the resulting products. Research into granular mixing processes has been, thus far, largely focused on laboratory scale mixers with simple geometries, while actual industrial processes often require large mixers with complex geometries. Moreover, granular mixing processes are often very sensitive to changes in operating conditions and any solutions ...


Sorption-Based Energy Storage Systems: A Review, Kyaw Thu, Nasruddin Nasruddin, Sourav Mitra, Bidyut Baran Saha Apr 2019

Sorption-Based Energy Storage Systems: A Review, Kyaw Thu, Nasruddin Nasruddin, Sourav Mitra, Bidyut Baran Saha

Makara Journal of Technology

Mismatched timing between the supply and demand of energy calls for reliable storage systems. Energy storage systems have become further significant with the widespread implementation of renewable energy. These systems can mitigate problems that are often associated with renewable energy sources such as supply unreliability while meeting the de-mand during peak hours. Energy can be stored in various forms, yet storage systems can be generally grouped based on their output forms, namely (i) electricity and (ii) heat or thermal energy. Electrical energy is the most convenient and effective form since it can power almost all modern devices. However, the electricity ...


Advanced Manufacturing And Nanotechnology For Non-Noble Metal-Based Oxygen Evolution Electrocatalysts, Bowei Zhang Jan 2019

Advanced Manufacturing And Nanotechnology For Non-Noble Metal-Based Oxygen Evolution Electrocatalysts, Bowei Zhang

Graduate Theses and Dissertations

The oxygen evolution reaction (OER) plays vital roles in electrochemical energy conversion and storage applications, including water-splitting systems, fuel cells, metal-air batteries, and CO2 reduction devices, but the development of highly active and robust OER catalysts based on non-noble metals by simple methods is challenging. In this dissertation, three major strategies are proposed for developing advanced OER electrocatalysts at low cost by simple and versatile methods. In the first work, a bimetallic Ni-Fe-P nanosheet arrays were designed and fabricated as a pre-catalyst to catalyzing super high OER current densities under alkaline and neutral media. To catalyze a 10 mA/cm2 ...


A Review Of Renewable Energy Assessment Methods In Green Building And Green Neighborhood Rating Systems, Chong Zhang, Chengliao Cui, Ying Zhang, Jiaqi Yuan, Yimo Luo, Wenjie Gang Jan 2019

A Review Of Renewable Energy Assessment Methods In Green Building And Green Neighborhood Rating Systems, Chong Zhang, Chengliao Cui, Ying Zhang, Jiaqi Yuan, Yimo Luo, Wenjie Gang

Technological and Higher Education Institute of Hong Kong (THEi) Staff Publications

Green buildings and neighborhoods can help mitigate impacts of buildings on the environment, society and economy. Many rating systems or tools have been developed worldwide to assess and certificate green buildings or green neighborhoods. Renewable energy plays an important role in achieving green buildings/neighborhoods or zero energy buildings/neighborhoods by reducing fuel consumption and pollution emissions. However, substantial differences exist in assessing or quantifying the renewable energy in green building/neighborhood rating systems. This paper therefore provides a comprehensive review on renewable energy assessment methods adopted in green building/neighborhood rating systems, which would be very helpful to understand ...


Concentric Contra-Rotating Dual Shaft Vertical Axis Wind Turbine, Emily Walz, Marcellin Zahui, Andrew Shires, Carl Gilkeson Dec 2018

Concentric Contra-Rotating Dual Shaft Vertical Axis Wind Turbine, Emily Walz, Marcellin Zahui, Andrew Shires, Carl Gilkeson

Essential Studies UNDergraduate Showcase

A typical vertical axis wind turbine (VAWT) consists of two or more airfoils all attached to a single central axis. The wind turbine style most commonly found in renewable energy is the horizontal axis wind turbine (HAWT) that have a high energy production efficiency in exchange for requiring large amounts of land and air space. Alternatively, a VAWT can function in low speeds and in smaller less typical locations. As a result, novel VAWT designs are researched to improve their energy efficiency. An example of a novel VAWT is the concentric counter-rotating VAWT investigated theoretically using the 2D computational fluid ...


Communication Based Control For Dc Microgrids, Mahmoud S. Saleh, Yusef Esa, Ahmed Mohamed Jan 2018

Communication Based Control For Dc Microgrids, Mahmoud S. Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

Centralized communication-based control is one of the main methods that can be implemented to achieve autonomous advanced energy management capabilities in DC microgrids. However, its major limitation is the fact that communication bandwidth and computation resources are limited in practical applications. This can be often improved by avoiding redundant communications and complex computations. In this paper, an autonomous communication-based hybrid state/event driven control scheme is proposed. This control scheme is hierarchical and heuristic, such that on the primary control level, it encompasses state-driven local controllers, and on the secondary control level, an event-driven MG centralized controller (MGCC) is used ...


Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao Jan 2018

Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao

Honors Undergraduate Theses

Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment ...


An Integrated Closed Convergent System For Optimal Extraction Of Head-Driven Tidal Energy, Michelle Ann Vieira Jan 2018

An Integrated Closed Convergent System For Optimal Extraction Of Head-Driven Tidal Energy, Michelle Ann Vieira

UNF Graduate Theses and Dissertations

As the demands for energy increased with the global increase in population, there is a need to create and invest in more clean and renewable energy sources. Energy derived from the movement of the tides is an ancient concept that is currently being harnessed in a handful of large tidal range locations. However, the need to move from fossil fuel driven energy sources to those that are clean and non-polluting is a priority for a sustainable future. Globally, hydropower potential is estimated to be more than 16,400-Terawatt hours annually. Given that the electricity consumption worldwide was at 15,068-Terawatt ...


Structural And Aerodynamic Design, Procedure And Analysis Of A Small V-Shaped Vertical Axis Wind Turbine, Odari J. Whyte Jan 2018

Structural And Aerodynamic Design, Procedure And Analysis Of A Small V-Shaped Vertical Axis Wind Turbine, Odari J. Whyte

Electronic Theses and Dissertations

Over the last two decades there has been a renewed interest in Vertical Axis Wind Turbines. This turbine configuration though unpopular for large-scale generation has found a niche market in the way of offshore energy harvesting. However, offshore wind has its challenges. In this thesis a detailed comprehensive study of a proposed V-shaped vertical axis turbine rotor is performed in order to examine its structural and aerodynamic characteristics. The design met and exceeded the safety parameters establish for test bed operation, showing a factor of safety of 1.87 with regard to fatigue stress response. A satisfactory fatigue stress design ...


Triboelectric Turbines: Design And Construction Of A Multi-Rotor Counter-Rotating Wind Turbine Utilizing Direct-Current Triboelectric Nanogenerators, Adam Forti Jun 2017

Triboelectric Turbines: Design And Construction Of A Multi-Rotor Counter-Rotating Wind Turbine Utilizing Direct-Current Triboelectric Nanogenerators, Adam Forti

Honors Theses

Direct-current triboelectric nanogenerators (DC-TENG) harness the friction generated between dissimilar rotating materials and convert it to useable electrical power. One of the many potential applications of this technology is in small scale renewable energy. A wind turbine was designed in which multiple DC-TENG generators would be attached to turbine blades of varying dimensions. This project involved the design and construction of several rotating DC-TENG prototypes, followed by measuring the electrical output of each nanogenerator at various rotational speeds.


Preface-Jes Focus Issue On Electrolysis For Increased Renewable Energy Penetration, B. Pivovar, M. Carmo, K. Ayers, X. Zhang, J. O'Brien Oct 2016

Preface-Jes Focus Issue On Electrolysis For Increased Renewable Energy Penetration, B. Pivovar, M. Carmo, K. Ayers, X. Zhang, J. O'Brien

Mechanical & Aerospace Engineering Faculty Publications

(First paragraph) Today represents a particularly exciting time, as our planet’s energy system is undergoing major changes due to dramatically decreasing renewable energy prices and increasing societal concerns over greenhouse gas emissions, criteria pollutants (arsenic, mercury, NOx, particulate matter), and climate change. These factors are pushing society toward deep decarbonization of our energy system, perhaps the most challenging issue facing the planet today. Unfortunately, wind and solar energy, while both promising generation sources, come with intermittency challenges and have limitations in their abilities to impact industrial and transportation sector demands where fossil fuel energy carriers based on chemical bonds ...


High Tech High Touch: Lessons Learned From Project Haiti 2011, Yan Tang, Marc Compere, Yung Lun Wong, Jared Anthony Coleman, Matthew Charles Selkirk Sep 2016

High Tech High Touch: Lessons Learned From Project Haiti 2011, Yan Tang, Marc Compere, Yung Lun Wong, Jared Anthony Coleman, Matthew Charles Selkirk

Marc Compere

In this paper, we will share our experiences and lessons learned from a design project for providing clean water to a Haitian orphanage (Project Haiti 2011). Supported by funds from a renewable energy company and the university president’s office, five engineering students and two faculty members from Embry-Riddle Aeronautical University successfully designed and installed a solar powered water purification system for an orphanage located in Chambellan, Haiti. This paper discusses the unique educational experiences gained from unusual design constraints, such as ambiguity of existing facilities due to limited communication, logistics of international construction at a remote village location, and ...


Optimization Of Electricity Generation Schemes In The Java-Bali Grid System With Co2 Reduction Consideration, Farizal Farizal, Wenty Eka Septia, Amar Rachman, Nasruddin Nasruddin, Teuku Meurah Indra Mahlia Aug 2016

Optimization Of Electricity Generation Schemes In The Java-Bali Grid System With Co2 Reduction Consideration, Farizal Farizal, Wenty Eka Septia, Amar Rachman, Nasruddin Nasruddin, Teuku Meurah Indra Mahlia

Makara Journal of Technology

This research considers the problem of reducing CO2 emissions from the Java-Bali power grid system that consists of a variety of power-generating plants: coal-fired, natural gas, oil, and renewable energy (PV, geothermal, hydroelectric, wind, and landfill gas). The problem is formulated as linear programming and solved using LINGO 10. The model was developed for a nation to meet a specified CO2 emission target. Two carbon dioxide mitigation options are considered in this study, i.e. fuel balancing and fuel switching. In order to reduce the CO2 emissions by 26% in 2021, State Electric Supply Company (PLN) has to generate up ...


Effects Of Emf Emissions From Undersea Electric Cables On Coral Reef Fishes, Robert F. Jermain Jul 2016

Effects Of Emf Emissions From Undersea Electric Cables On Coral Reef Fishes, Robert F. Jermain

HCNSO Student Theses and Dissertations

The objective of this project was to determine if the electromagnetic field (EMF) emissions from undersea power cables impacted the local and transient marine life, with an emphasis on reef fishes. The work was done at South Florida Ocean Measurement Facility of Naval Surface Warfare Center, Carderock Division, Broward County, Florida. This facility functions as the hub for a range of active undersea detection and data transmission cables. It has multiple active submarine power cables that extend several miles offshore and which can deliver power and enable data transmission to and from a range of acoustic and EMF sensors. The ...


An Entrochemical Water Heater, Sanza Kazadi, Sabrina Lin, Kelvin Ye May 2016

An Entrochemical Water Heater, Sanza Kazadi, Sabrina Lin, Kelvin Ye

Sanza Kazadi

Entrochemical systems are systems capable of generating internal thermal gradients through internal
water movements which simultaneously transfer get of vaporization between internal water reservoirs. These systems move to a chemical equilibrium state that generates and maintains a thermal gradient. Entrochemical thermal batteries (ETB) can be constructed which extend the thermal gradient of a single cell through an additive process. Such systems can deliver useful work. Additionally solutions used therein may be recharged passively using environmental heat.

We describe the design and function of a bench-scale water heater capable of heating a small water
reservoir. The system is powered by an ...


Compact Single Multistage Distillation, Sanza Kazadi, Brent Usui, Ashley An, Robin B. Zhao May 2016

Compact Single Multistage Distillation, Sanza Kazadi, Brent Usui, Ashley An, Robin B. Zhao

Sanza Kazadi

We report the design and function of a distillation apparatus which uses salt concentration gradients to
drive distillation and desalination of simulated sea water. Utilizing the entrochemical effect, the system
generates an internal thermal gradient. An internal distiller is arranged with the condenser in the cold end of the
entrochemical system and a seawater reservoir in the warm end of the entrochemical system. The heat of
vaporization is recaptured in the cold side of the entrochemical system and re-used. The spent solution in the
entrochemical system can be recharged using evaporation, making the surrounding thermal energy the source
of energy ...


Low Cost Solar Chimney Performance-Improving Enhancement, Sanza Kazadi, Meishan Liang, Aaron Togelang, Daniel Chan Sep 2015

Low Cost Solar Chimney Performance-Improving Enhancement, Sanza Kazadi, Meishan Liang, Aaron Togelang, Daniel Chan

Sanza Kazadi

Solar chimneys are potentially important components in energy-providing systems. These are
passive solar systems which transduce solar irradiance to airflow. The airflow, in turn, can be transformed
into electricity. While the ability of the solar chimney to create airflow has been examined in a number of
different studies, little attention has been focused on improving the performance of the solar collector. In
principle, increasing the thermal lift of the chimney would improve the chimney's overall airflow
production and extend the upper limit of energy production.
We examine an improvement to the solar collector design for the simple solar chimney ...


Constrained Discrete Phase Control Of A Heaving Wave Energy Converter In Irregular Seas Using Reinforcement Learning, Praveen D. Malali Jul 2015

Constrained Discrete Phase Control Of A Heaving Wave Energy Converter In Irregular Seas Using Reinforcement Learning, Praveen D. Malali

Mechanical & Aerospace Engineering Theses & Dissertations

Designed for offshore deployment in irregular seas, the point absorber wave energy conversion (WEC) system is promisingly attractive amongst the currently available WEC technologies. The effectiveness of phase control when applied to a heaving point absorber through a hydraulic power take-off (PTO) system is systematically investigated in both regular and irregular waves. For this purpose, two phase control accumulators are utilized in the hydraulic PTO system. Simulations are performed in MATLAB® using the Cummins equation to model the dynamics of the heaving point absorber in the time domain.

For a given sea state, the opening instant of the control valves ...


Vanadium Trichloride Thermochemical Solar Energy Storage System Analysis., Caleb Michael Rogers May 2015

Vanadium Trichloride Thermochemical Solar Energy Storage System Analysis., Caleb Michael Rogers

Electronic Theses and Dissertations

As annual energy consumption grows, developing renewable solar energy conversion systems, storage systems, and high density electrical energy production systems is growing increasingly important. The proposed system utilizes vanadium trichloride thermal decomposition to produce chlorine gas and vanadium dichloride. A second reaction combines gaseous hydrogen chloride and the product vanadium dichloride to reform vanadium trichloride and produce hydrogen gas. Hydrogen gas and chlorine gas can be stored indefinitely and electrical energy is obtained from the chemicals by a non-humidified dry membrane hydrogen – chlorine fuel cell. The fuel cell produces the gaseous hydrogen chloride needed to reform vanadium trichloride. The cycle ...


Effective Utilization Of Excess Energy In Standalone Hybrid Renewable Energy Systems For Improving Comfort Ability And Reducing Cost Of Energy: A Review And Analysis Feb 2015

Effective Utilization Of Excess Energy In Standalone Hybrid Renewable Energy Systems For Improving Comfort Ability And Reducing Cost Of Energy: A Review And Analysis

Faculty of Engineering University of Malaya

One of the features that characterize renewable energy sources is their variability and intermittency. Intermittency covers both the predictable and unpredictable variations of their power outputs and uncertainty in the power availability. To overcome the drawback of intermittency, special design considerations should be taken into account. These additional design considerations increases the overall cost of the renewable energy systems. Adding storage system and/or backup source to the renewable sources is one of the measures used to guarantee the continuity of power supply to the loads, and therefore improve the reliability of the renewable energy systems. The operation of renewable ...