Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Pt nanoparticles

Chemical Engineering

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Effect Of The Electrodeposition Potential Of Platinum On The Catalytic Activity Of A Pt/Gc Catalyst Toward Formic Acid Electro−Oxidation, Islam M. Al-Akraa, Bilquis A. Al-Qodami Ms., Ahmad M. Mohammad Prof Jan 2020

Effect Of The Electrodeposition Potential Of Platinum On The Catalytic Activity Of A Pt/Gc Catalyst Toward Formic Acid Electro−Oxidation, Islam M. Al-Akraa, Bilquis A. Al-Qodami Ms., Ahmad M. Mohammad Prof

Chemical Engineering

The electrocatalytic activity of platinum (Pt)–modified glassy carbon (GC) (referred as Pt/GC) electrodes toward the formic acid electro−oxidation (FAO) was investigated. The Pt deposition on the GC substrate was carried out by a potentiostatic technique at different potentials (from 0.2 V to −0.2 V vs. Hg/Hg2Cl2/KCl (sat.) reference electrode) and the corresponding influence on the catalytic activity toward FAO was monitored. The electrocatalytic inspection revealed a potential role for the Pt deposition potential in boosting the catalytic efficiency of the catalyst toward FAO and further in mitigating the CO poisoning that eventually deactivate the catalyst. Interestingly, the highest activity toward …


A Simple And Effective Way To Overcome Carbon Monoxide Poisoning Of Platinum Surfaces In Direct Formic Acid Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Sohair A. Darwish Ms Jan 2019

A Simple And Effective Way To Overcome Carbon Monoxide Poisoning Of Platinum Surfaces In Direct Formic Acid Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Sohair A. Darwish Ms

Chemical Engineering

A glassy carbon (GC) electrode modified with multi-walled carbon nanotubes (MWCNTs) and platinum nanoparticles (PtNPs), Pt/MWCNTs-GC, has been introduced for formic acid electro-oxidation (FAO). A similar loading of PtNPs has been conserved for a proper comparison between the Pt/MWCNTs-GC and the unmodified Pt/GC electrodes. The modification with MWCNTs could enhance the loading of PtNPs onto the GC electrode in a way that minimizes its agglomeration and increases its dispersion in the CNTs network. This not only increases the surface area exposed to the reaction but also interrupts the contiguity of the Pt active sites minimizing the adsorption of the poisoning …