Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Electrode Development And Electrocatalysts Design For Polymer Electrolyte Membrane Fuel Cells, Xiong Peng Apr 2019

Electrode Development And Electrocatalysts Design For Polymer Electrolyte Membrane Fuel Cells, Xiong Peng

Theses and Dissertations

Because of environmental issues and national conflicts caused by overuse of fossil fuels, there is a need to seek renewable ways to utilize energy. In the transportation sector, hydrogen-based polymer electrolyte membrane fuel cells, including proton exchange membrane fuel cells (PEMFCs) and anion exchange membrane fuel cells (AEMFCs), have been considered as a promising alternative to conventional combustion engines. However, the widespread commercialization of both PEMFCs and AEMFCs has been hindered by several factors, including cost and performance. In this thesis, a series of topics including electrode fabrication, electrocatalyst development for both PEMFCs and AEMFCs, as well as the water …


Facile Synthesis Of A Tailored-Designed Au/Pt Nanoanode For Enhanced Formic Acid, Methanol, And Ethylene Glycol Electrooxidation, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof Jan 2019

Facile Synthesis Of A Tailored-Designed Au/Pt Nanoanode For Enhanced Formic Acid, Methanol, And Ethylene Glycol Electrooxidation, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof

Chemical Engineering

The recent revolution in nanoscience and global energy demand have motivated research in liquid fuel cells (LFCs) due to their enhanced efficiency, moving flexibility, and reduced contamination. In line with this advancement, a glassy carbon (GC) electrode was modified with platinum (PtNPs) and gold (AuNPs) nanoparticles to fabricate a nanosized anode for formic acid, methanol, and ethylene glycol electrooxidation (abbreviated, respectively, to FAO, MO, and EGO), of the key anodic reactions of LFCs. The deposition sequence of the catalyst’s layers was important where the Au/Pt/GC electrode (in which PtNPs were directly deposited onto the GC surface followed by AuNPs—surface coverage …


Facile Synthesis Of A Tailored-Designed Au/Pt Nanoanode For Enhanced Formic Acid, Methanol, And Ethylene Glycol Electrooxidation, Islam M. Al-Akraa Dr., Yaser M. Asal Mr Jan 2019

Facile Synthesis Of A Tailored-Designed Au/Pt Nanoanode For Enhanced Formic Acid, Methanol, And Ethylene Glycol Electrooxidation, Islam M. Al-Akraa Dr., Yaser M. Asal Mr

Chemical Engineering

The recent revolution in nanoscience and global energy demand have motivated research in liquid fuel cells (LFCs) due to their enhanced efficiency, moving flexibility, and reduced contamination. In line with this advancement, a glassy carbon (GC) electrode was modified with platinum (PtNPs) and gold (AuNPs) nanoparticles to fabricate a nanosized anode for formic acid, methanol, and ethylene glycol electrooxidation (abbreviated, respectively, to FAO, MO, and EGO), of the key anodic reactions of LFCs. The deposition sequence of the catalyst’s layers was important where the Au/Pt/GC electrode (in which PtNPs were directly deposited onto the GC surface followed by AuNPs—surface coverage …


Computational Modeling Of The Structure And Catalytic Behavior Of Graphene-Supported Pt And Ptru Nanoparticles, Raymond Gasper Oct 2018

Computational Modeling Of The Structure And Catalytic Behavior Of Graphene-Supported Pt And Ptru Nanoparticles, Raymond Gasper

Doctoral Dissertations

Computer modeling has the potential to revolutionize the search for new catalysts for specific applications primarily via high-throughput methodologies that allow researchers to scan through thousands or millions of potential catalysts in search of an optimal candidate. To date, the bulk of the literature on computational studies of heterogeneous catalysis has focused on idealized systems with near-perfect crystalline surfaces that are representative of macroscopic catalysts. Advancing the frontier to nanoscale catalysis, in particular, heterogeneous catalysis on nanoclusters, requires consideration of low-symmetry nanoparticles with realistic structures including the attendant complexity arising from under-coordination of catalyst atoms and dynamic fluxionality of clusters. …


Multiscale Modeling Approach To Understand Active Sites In Non-Conventional Catalyst Layers For Fuel Cell Applications, Diana Constanza Orozco Gallo Dec 2017

Multiscale Modeling Approach To Understand Active Sites In Non-Conventional Catalyst Layers For Fuel Cell Applications, Diana Constanza Orozco Gallo

Doctoral Dissertations

Fuel cells development required stable, active and more abundant catalytic materials. Oxygen reduction reaction (ORR) is the key process to enhance better activity and reduce the fabrication costs. Pt-based has proven to be the best catalyst for ORR and greater efforts has been made in terms of reducing the Pt content in the electrodes, reduce electrode thickness and enhance better catalytic activities. To overcome many of the challenges present, the catalyst layer studies are the great importance in the fuel cell community. Understanding catalyst layer with new catalytic materials, and configurations requires the development of methodological approach to relate structure, …


Structural, Interfacial, And Electrochemical Properties Of Pr2nio4+Δ – Based Electrodes For Solid Oxide Fuel Cells, Emir Dogdibegovic Jan 2017

Structural, Interfacial, And Electrochemical Properties Of Pr2nio4+Δ – Based Electrodes For Solid Oxide Fuel Cells, Emir Dogdibegovic

Theses and Dissertations

Currently, the electrochemical performance and performance durability of solid oxide fuel cells (SOFCs) are limited by cathode materials. The high polarization resistance and phase instability of the cathode are two major challenges to hinder the commercialization of SOFC systems. Two families of oxides are presently known as potential cathode materials for SOFCs: (1) the perovskite family of oxides with a general formula of ABO3, and (2) the Ruddlesden-Popper (RP) family of oxides (e.g. nickelates) with a general formula of A2BO4. The electron-hole conduction in these materials occurs simultaneously with oxygen ion conduction based on …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Study And Development Of Sulfated Zirconia Based Proton Exchange Fuel Cell Membranes, Brittany Wilson Kemp Apr 2014

Study And Development Of Sulfated Zirconia Based Proton Exchange Fuel Cell Membranes, Brittany Wilson Kemp

Doctoral Dissertations

With the increasing consumption of energy, fuel cells are among the most promising alternatives to fossil fuels, provided some technical challenges are overcome. Proton exchange membrane fuel cells (PEMFCs) have been investigated and improvements have been made, but the problem with Nafion®, the main membrane for PEMFCs, has not been solved. Nafion® restricts the membranes from operating at higher temperatures, thus preventing them from working in small electronics. The problem is to develop a novel fuel cell membrane that performs comparably to Nafion® in PEMFCs.

The membranes were fabricated by applying sulfated zirconia, via template wetting, to porous alumina membranes. …


Solid Oxide Fuel Cells With Both High Voltage And Power Output By Utilizing Beneficial Interfacial Reaction, Chao Su, Zongping Shao, Ye Lin, Yuzhou Wu, Huanting Wang Jul 2012

Solid Oxide Fuel Cells With Both High Voltage And Power Output By Utilizing Beneficial Interfacial Reaction, Chao Su, Zongping Shao, Ye Lin, Yuzhou Wu, Huanting Wang

Faculty Publications

An intriguing cell concept by applying proton-conducting oxide as the ionic conducting phase in the anode and taking advantage of beneficial interfacial reaction between anode and electrolyte is proposed to successfully achieve both high open circuit voltage (OCV) and power output for SOFCs with thin-film samarium doped ceria (SDC) electrolyte at temperatures higher than 600 °C. The fuel cells were fabricated by conventional route without introducing an additional processing step. A very thin and dense interfacial layer (2–3 μm) with compositional gradient was created by in situ reaction between anode and electrolyte although the anode substrate had high surface roughness …


Fuel Cells, Frederick J. Munster Jr. Jan 1998

Fuel Cells, Frederick J. Munster Jr.

Maine Collection

Fuel Cells

by Frederick J. Munster Jr.

Edited by: Mr. Christopher Carroll

Maine Department of Economic Development, Augusta, Maine, 1998.

Contents: Hydrogen / Hydrogen Safety / Electrolysis / Electrolyzers / History of Fuel Cells / How Fuel Cells Operate / Fuel Cell Types / Fuel Cell Electrochemistry / Power Systems / Fuel Cells in Transportation / Hydrogen Powered Internal Combustion Engines / Home, Garden, Education and Industry / For More Information / Glossary / References


The Biochemical Fuel Cell : Conversion Of Waste To Energy, Charles August Mielke Sep 1986

The Biochemical Fuel Cell : Conversion Of Waste To Energy, Charles August Mielke

Theses

A batch biochemical-fuel cell was constructed and studies on the production of bioelectric energy using an alga Scenesdesmus quadricauda, and a bacterium Desulfovibrio desulfuricans, were conducted. Results were compared for a steady state cell using various concentrations of media components and showed that a 1000-fold increase in the concentration of media components produced a net potential output of 0.03mv/ml compared to an initial output of 0.02mv/ml. Further studies showed the biochemical net potential output using activated sludge from a waste treatment facility was 0.01mv/ml compared to 0.02mv/ml for the cell using the initial media concentration.

The system exhibited steady state …