Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Electrode Development And Electrocatalysts Design For Polymer Electrolyte Membrane Fuel Cells, Xiong Peng Apr 2019

Electrode Development And Electrocatalysts Design For Polymer Electrolyte Membrane Fuel Cells, Xiong Peng

Theses and Dissertations

Because of environmental issues and national conflicts caused by overuse of fossil fuels, there is a need to seek renewable ways to utilize energy. In the transportation sector, hydrogen-based polymer electrolyte membrane fuel cells, including proton exchange membrane fuel cells (PEMFCs) and anion exchange membrane fuel cells (AEMFCs), have been considered as a promising alternative to conventional combustion engines. However, the widespread commercialization of both PEMFCs and AEMFCs has been hindered by several factors, including cost and performance. In this thesis, a series of topics including electrode fabrication, electrocatalyst development for both PEMFCs and AEMFCs, as well as the water ...


Facile Synthesis Of A Tailored-Designed Au/Pt Nanoanode For Enhanced Formic Acid, Methanol, And Ethylene Glycol Electrooxidation, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof Jan 2019

Facile Synthesis Of A Tailored-Designed Au/Pt Nanoanode For Enhanced Formic Acid, Methanol, And Ethylene Glycol Electrooxidation, Yaser M. Asal Mr., Islam M. Al-Akraa Dr, Ahmad M. Mohammad Prof

Chemical Engineering

The recent revolution in nanoscience and global energy demand have motivated research in liquid fuel cells (LFCs) due to their enhanced efficiency, moving flexibility, and reduced contamination. In line with this advancement, a glassy carbon (GC) electrode was modified with platinum (PtNPs) and gold (AuNPs) nanoparticles to fabricate a nanosized anode for formic acid, methanol, and ethylene glycol electrooxidation (abbreviated, respectively, to FAO, MO, and EGO), of the key anodic reactions of LFCs. The deposition sequence of the catalyst’s layers was important where the Au/Pt/GC electrode (in which PtNPs were directly deposited onto the GC surface followed ...


Facile Synthesis Of A Tailored-Designed Au/Pt Nanoanode For Enhanced Formic Acid, Methanol, And Ethylene Glycol Electrooxidation, Islam M. Al-Akraa Dr., Yaser M. Asal Mr Jan 2019

Facile Synthesis Of A Tailored-Designed Au/Pt Nanoanode For Enhanced Formic Acid, Methanol, And Ethylene Glycol Electrooxidation, Islam M. Al-Akraa Dr., Yaser M. Asal Mr

Chemical Engineering

The recent revolution in nanoscience and global energy demand have motivated research in liquid fuel cells (LFCs) due to their enhanced efficiency, moving flexibility, and reduced contamination. In line with this advancement, a glassy carbon (GC) electrode was modified with platinum (PtNPs) and gold (AuNPs) nanoparticles to fabricate a nanosized anode for formic acid, methanol, and ethylene glycol electrooxidation (abbreviated, respectively, to FAO, MO, and EGO), of the key anodic reactions of LFCs. The deposition sequence of the catalyst’s layers was important where the Au/Pt/GC electrode (in which PtNPs were directly deposited onto the GC surface followed ...