Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

PDF

Edith Cowan University

Coatings

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Application-Specific Oxide-Based And Metal-Dielectric Thin-Film Materials Prepared By Radio Frequency Magnetron Sputtering, Mohammad Nur-E-Alam, Wade Lonsdale, Mikhail Vasiliev, Kamal Alameh Jan 2019

Application-Specific Oxide-Based And Metal-Dielectric Thin-Film Materials Prepared By Radio Frequency Magnetron Sputtering, Mohammad Nur-E-Alam, Wade Lonsdale, Mikhail Vasiliev, Kamal Alameh

ECU Publications Post 2013

We report on the development of several different thin-film functional material systems prepared by radio frequency (RF) magnetron sputtering at Edith Cowan University nanofabrication labs. While focusing on the RF sputtering process optimizations for new or the previously underexplored material compositions and multilayer structures, we disclose several unforeseen material properties and behaviours. Among these are an unconventional magnetic hysteresis loop with an intermediate saturation state observed in garnet trilayers, and an ultrasensitive magnetic switching behaviour in garnet-oxide composites (GOC). We also report on the unusually high thermal exposure stability observed in some nanoengineered metal-dielectric multilayers. We communicate research results related ...


Phase Separation And Enhanced Wear Resistance Of Cu88fe12 Immiscible Coating Prepared By Laser Cladding, Shuzhen Zhao, Shengfeng Zhou, Min Xie, Xiaoqin Dai, Dongchu Chen, Laichang Zhang Jan 2019

Phase Separation And Enhanced Wear Resistance Of Cu88fe12 Immiscible Coating Prepared By Laser Cladding, Shuzhen Zhao, Shengfeng Zhou, Min Xie, Xiaoqin Dai, Dongchu Chen, Laichang Zhang

ECU Publications Post 2013

In order to eliminate the microstructure segregation of Cu–Fe immiscible alloys which characterized with a liquid miscible gap, the Cu88Fe12 (wt.%) immiscible coating was prepared by laser cladding. The phase separation characteristic and wear resistance of the Cu88Fe12 (wt.%) immiscible coating were also investigated. The results show that the size of the milled Cu88Fe12 composite powder is reduced comparing to that of the un-milled powder due to fracturing during mechanical milling. Moreover, the demixing or delamination disappears in the Cu88Fe12 immiscible coating and a large amount of face-centered-cubic (fcc) γ-Fe and body-centered-cubic (bcc) α-Fe particles are dispersed in the ...