Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

PDF

Edith Cowan University

Advanced glazings

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Initial Field Testing Results From Building-Integrated Solar Energy Harvesting Windows Installation In Perth, Australia, Mikhail Vasiliev, Mohammad Nur-E-Alam, Kamal Alameh Jan 2019

Initial Field Testing Results From Building-Integrated Solar Energy Harvesting Windows Installation In Perth, Australia, Mikhail Vasiliev, Mohammad Nur-E-Alam, Kamal Alameh

ECU Publications Post 2013

We report on the field testing datasets and performance evaluation results obtained from a commercial property-based visually-clear solar window installation site in Perth-Australia. This installation was fitted into a refurbished shopping center entrance porch and showcases the potential of glass curtain wall-based solar energy harvesting in built environments. In particular, we focus on photovoltaic (PV) performance characteristics such as the electric power output, specific yield, day-to-day consistency of peak output power, and the amounts of energy generated and stored daily. The dependencies of the generated electric power and stored energy on multiple environmental and geometric parameters are also studied. An ...


Recent Developments In Solar Energy-Harvesting Technologies For Building Integration And Distributed Energy Generation, Mikhail Vasiliev, Mohammad Nur-E-Alam, Kamal Alameh Jan 2019

Recent Developments In Solar Energy-Harvesting Technologies For Building Integration And Distributed Energy Generation, Mikhail Vasiliev, Mohammad Nur-E-Alam, Kamal Alameh

ECU Publications Post 2013

We present a review of the current state of the field for a rapidly evolving group of technologies related to solar energy harvesting in built environments. In particular, we focus on recent achievements in enabling the widespread distributed generation of electric energy assisted by energy capture in semi-transparent or even optically clear glazing systems and building wall areas. Whilst concentrating on recent cutting-edge results achieved in the integration of traditional photovoltaic device types into novel concentrator-type windows and glazings, we compare the main performance characteristics reported with these using more conventional (opaque or semi-transparent) solar cell technologies. A critical overview ...