Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

PDF

Computer Engineering

Edith Cowan University

SNN-based classification

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Hardware-Deployable Neuromorphic Solution For Encoding And Classification Of Electronic Nose Data, Anup Vanarse, Alexander Rassau, Peter Van Der Made Jan 2019

A Hardware-Deployable Neuromorphic Solution For Encoding And Classification Of Electronic Nose Data, Anup Vanarse, Alexander Rassau, Peter Van Der Made

ECU Publications Post 2013

In several application domains, electronic nose systems employing conventional data processing approaches incur substantial power and computational costs and limitations, such as significant latency and poor accuracy for classification. Recent developments in spike-based bio-inspired approaches have delivered solutions for the highly accurate classification of multivariate sensor data with minimized computational and power requirements. Although these methods have addressed issues related to efficient data processing and classification accuracy, other areas, such as reducing the processing latency to support real-time application and deploying spike-based solutions on supported hardware, have yet to be studied in detail. Through this investigation, we proposed a spiking ...


Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine Jan 2019

Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine

ECU Publications Post 2013

Recent studies in bioinspired artificial olfaction, especially those detailing the application of spike-based neuromorphic methods, have led to promising developments towards overcoming the limitations of traditional approaches, such as complexity in handling multivariate data, computational and power requirements, poor accuracy, and substantial delay for processing and classification of odors. Rank-order-based olfactory systems provide an interesting approach for detection of target gases by encoding multi-variate data generated by artificial olfactory systems into temporal signatures. However, the utilization of traditional pattern-matching methods and unpredictable shuffling of spikes in the rank-order impedes the performance of the system. In this paper, we present an ...