Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

A Laboratory Investigation Of Cement Based Materials With Cellulose Nanofibers, Parivash Takasi Dec 2019

A Laboratory Investigation Of Cement Based Materials With Cellulose Nanofibers, Parivash Takasi

Electronic Theses and Dissertations

Cellulose Nanofibers (CNFs) are used as additives in cement-based products to modify their properties. Recent studies about the effects of CNFs on cement paste showed inconsistent results for several different important properties, including compressive strength and free shrinkage. There is reason to believe that the unsystematic results of the compressive strengths were affected by the lack of uniform dispersion of CNFs. As a potential remedy, two different mixing methods were applied. The first method used a basic mixer, but aggregates were added to the cement paste mixture to improve the blending process. The second method utilized a high-speed shear mixer ...


Effect Of Mix Parameters On Strength Of Geopolymer Mortars - Experimental Study, Abdolhossein Naghizadeh, Stephen O. Ekolu Nov 2019

Effect Of Mix Parameters On Strength Of Geopolymer Mortars - Experimental Study, Abdolhossein Naghizadeh, Stephen O. Ekolu

International Conference on Durability of Concrete Structures

In this article, an investigation is reported on development of strength in South African fly ash (FA) – based geopolymer mixtures. Locally available Class F, FA from one of the coal power stations was used in the investigation. The alkali-activator used consisted of sodium silicate (SS) and sodium hydroxide (SH) mixed in varied ratios of 1.0, 1.5, 2.0, 2.5 and 3.0 SS to SH. The SS of silicate modulus = 2.5 was used but the SH concentration in the activator was varied to 10, 12, 14M NaOH. Mortars of 2.25 aggregate/binder ratio were used ...


Compressive Strength, Free Expansion And Shrinkage Of Expansive Concrete Containing Fly Ash, Warangkana Saengsoy, Rachot Chatchawan, Somnuk Tangtermsirikul Nov 2019

Compressive Strength, Free Expansion And Shrinkage Of Expansive Concrete Containing Fly Ash, Warangkana Saengsoy, Rachot Chatchawan, Somnuk Tangtermsirikul

International Conference on Durability of Concrete Structures

This study is aimed to investigate effect of fly ash on compressive strength, free expansion and shrinkage of expansive concrete. High CaO and low CaO fly ashes are used in this study. The replacement percentages of total binders by fly ash are 0 and 30% by weight. The replacements of expansive additive are 0, 20 and 30 kg/m3 of concrete. The test results revealed that the use of fly ash especially the high CaO fly ash can enhance expansion of expansive concrete at early age. The use of fly ash also reduces shrinkage at long term of the ...


Development Of Heavyweight Self-Compacting Concrete And Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates, Afsaneh Valizadeh, Farhad Aslani, Zohaib Asif, Matt Roso Mar 2019

Development Of Heavyweight Self-Compacting Concrete And Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates, Afsaneh Valizadeh, Farhad Aslani, Zohaib Asif, Matt Roso

Research outputs 2014 to 2021

Heavyweight self-compacting concrete (HWSCC) and heavyweight geopolymer concrete (HWGC) are new types of concrete that integrate the advantages of heavyweight concrete (HWC) with self-compacting concrete (SCC) and geopolymer concrete (GC), respectively. The replacement of natural coarse aggregates with magnetite aggregates in control SCC and control GC at volume ratios of 50%, 75%, and 100% was considered in this study to obtain heavyweight concrete classifications, according to British standards, which provide proper protection from sources that emit harmful radiations in medical and nuclear industries and may also be used in many offshore structures. The main aim of this study is to ...


Air Void Clustering In Retempering Concrete And Its Contribution To Compressive Strength, Wen Sun Jan 2019

Air Void Clustering In Retempering Concrete And Its Contribution To Compressive Strength, Wen Sun

Graduate Theses and Dissertations

Air void clustering is a phenomenon in concrete in which air bubbles accumulate around the coarse aggregate. It is considered as a major cause of reduction of concrete strength.

This thesis focuses on the effect of different variables on air void clustering and its contribution to the performance of concrete. Six variables were considered in the study, including cement type (low alkali cement and TIL cement), fly ash (fly ash A and B), coarse aggregate type (lime stone and river gravel), chemical admixture type (admixture 1 and 2) , mixing water temperature (70℉ and 90℉), and retempering (with and without). A ...