Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Engineering

Extraction And Visualization Of Orientation Data From Virtual Geologic Surfaces With Matlab®, Avery J. Welker, John Patrick Hogan, Andreas Eckert Nov 2019

Extraction And Visualization Of Orientation Data From Virtual Geologic Surfaces With Matlab®, Avery J. Welker, John Patrick Hogan, Andreas Eckert

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

High-resolution visualization of surfaces of geologic interest, at a multitude of scales, using 3D point cloud technologies provides an opportunity to analyze spatial relationships of surfaces using orientation data. We present a MATLAB® script that produces planar geologic attitude data (e.g., strike, dip, and dip-direction data) from 3D datasets (e.g., point clouds, 3D scanning). The method utilizes Cartesian coordinates of triangular planar surfaces and converts them into matrices of conventional geologic attitude data. Spatial relationships among data points can be investigated, using polar tangent diagrams, stereographic analysis, or geologic curvature analysis. We utilize this script to create "synthetic" graphical plots …


Three-Dimensional Rotation Of Paramagnetic And Ferromagnetic Prolate Spheroids In Simple Shear And Uniform Magnetic Field, Christopher A. Sobecki, Yanzhi Zhang, Cheng Wang Oct 2019

Three-Dimensional Rotation Of Paramagnetic And Ferromagnetic Prolate Spheroids In Simple Shear And Uniform Magnetic Field, Christopher A. Sobecki, Yanzhi Zhang, Cheng Wang

Mathematics and Statistics Faculty Research & Creative Works

We examine a time-dependent, three-dimensional rotation of magnetic ellipsoidal particles in a two-dimensional, simple shear flow and a uniform magnetic field. We consider that the particles have paramagnetic and ferromagnetic properties, and we compare their rotational dynamics due to the strengths and directions of the applied uniform magnetic field. We determine the critical magnetic field strength that can pin the particles' rotations. Above the critical field strength, the particles' stable steady angles were determined. In a weak magnetic regime (below the critical field strength), a paramagnetic particle's polar angle will oscillate toward the magnetic field plane while its azimuthal angle …


A Framework Of Integrating Manufacturing Plants In Smart Grid Operation: Manufacturing Flexible Load Identification, Md. Monirul Islam, Zeyi Sun, Wenqing Hu, Cihan H. Dagli Aug 2019

A Framework Of Integrating Manufacturing Plants In Smart Grid Operation: Manufacturing Flexible Load Identification, Md. Monirul Islam, Zeyi Sun, Wenqing Hu, Cihan H. Dagli

Engineering Management and Systems Engineering Faculty Research & Creative Works

In the deregulated electricity markets run by Independent System Operator (ISO), a two-settlement (day-ahead and real-time) process is typically used to determine the electricity price to the end-use customers at different buses. In the day-ahead settlement, the demand is predicted at each bus based on the previous consumption behavior of the consumers and thus, Locational Marginal Price (LMP) can be determined and shared to the consumers. A significant gap is usually observed between the planned and real-time demands due to the uncertainties of the weather (temperature, wind-speed etc.), the intensity of business, and everyday activities. Therefore, a large price variation …


Action Recognition In Manufacturing Assembly Using Multimodal Sensor Fusion, Md. Al-Amin, Wenjin Tao, David Doell, Ravon Lingard, Zhaozheng Yin, Ming-Chuan Leu, Ruwen Qin Aug 2019

Action Recognition In Manufacturing Assembly Using Multimodal Sensor Fusion, Md. Al-Amin, Wenjin Tao, David Doell, Ravon Lingard, Zhaozheng Yin, Ming-Chuan Leu, Ruwen Qin

Computer Science Faculty Research & Creative Works

Production innovations are occurring faster than ever. Manufacturing workers thus need to frequently learn new methods and skills. In fast changing, largely uncertain production systems, manufacturers with the ability to comprehend workers' behavior and assess their operation performance in near real-time will achieve better performance than peers. Action recognition can serve this purpose. Despite that human action recognition has been an active field of study in machine learning, limited work has been done for recognizing worker actions in performing manufacturing tasks that involve complex, intricate operations. Using data captured by one sensor or a single type of sensor to recognize …


Joint Manufacturing And Onsite Microgrid System Control Using Markov Decision Process And Neural Network Integrated Reinforcement Learning, Wenqing Hu, Zeyi Sun, Y. Zhang, Y. Li Aug 2019

Joint Manufacturing And Onsite Microgrid System Control Using Markov Decision Process And Neural Network Integrated Reinforcement Learning, Wenqing Hu, Zeyi Sun, Y. Zhang, Y. Li

Mathematics and Statistics Faculty Research & Creative Works

Onsite microgrid generation systems with renewable sources are considered a promising complementary energy supply system for manufacturing plant, especially when outage occurs during which the energy supplied from the grid is not available. Compared to the widely recognized benefits in terms of the resilience improvement when it is used as a backup energy system, the operation along with the electricity grid to support the manufacturing operations in non-emergent mode has been less investigated. In this paper, we propose a joint dynamic decision-making model for the optimal control for both manufacturing system and onsite generation system. Markov Decision Process (MDP) is …


Adhesion Of Two-Dimensional Titanium Carbides (Mxenes) And Graphene To Silicon, Yanxiao Li, Shuohan Huang, Congjie Wei, Chenglin Wu, Vadym Mochalin Jul 2019

Adhesion Of Two-Dimensional Titanium Carbides (Mxenes) And Graphene To Silicon, Yanxiao Li, Shuohan Huang, Congjie Wei, Chenglin Wu, Vadym Mochalin

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Two-dimensional transition metal carbides (MXenes) have attracted a great interest of the research community as a relatively recently discovered large class of materials with unique electronic and optical properties. Understanding of adhesion between MXenes and various substrates is critically important for MXene device fabrication and performance. We report results of direct atomic force microscopy (AFM) measurements of adhesion of two MXenes (Ti3C2Tx and Ti2CTx) with a SiO2 coated Si spherical tip. The Maugis-Dugdale theory was applied to convert the AFM measured adhesion force to adhesion energy, while taking into account …


In Situ Nmr Parameter Monitoring Systems And Methods For Measuring Ph And Temperature, Ming Huang, Lingyu Chi, Rex E. Gerald Ii, Jie Huang, Annalise R. Pfaff, Klaus Woelk May 2019

In Situ Nmr Parameter Monitoring Systems And Methods For Measuring Ph And Temperature, Ming Huang, Lingyu Chi, Rex E. Gerald Ii, Jie Huang, Annalise R. Pfaff, Klaus Woelk

Electrical and Computer Engineering Faculty Research & Creative Works

Devices and methods are provided for measuring temperatures and pHs of a sample in situ using NMR spectroscopy, and for sealing one or more ends of a capillary tube after a reference material has been added to the capillary tube, which is used in an in situ NMR temperature measurement device. A method for measuring a pH of a sample in situ using NMR spectroscopy includes providing an in situ NMR pH measurement device. This device includes a sample housing member configured to house a target sample, at least one pH sensor configured to exhibit an NMR spectral change due …


Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data, Ryan G. Smith, R. Knight Apr 2019

Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data, Ryan G. Smith, R. Knight

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Land subsidence as a result of groundwater overpumping in the San Joaquin Valley, California, is associated with the loss of groundwater storage and aquifer contamination. Although the physical processes governing land subsidence are well understood, building predictive models of subsidence is challenging because so much subsurface information is required to do so accurately. For the first time, we integrate airborne electromagnetic data, representing the subsurface, with subsidence data, mapped by interferometric synthetic aperture radar (InSAR), to model deformation. By combining both data sets, we are able to solve for hydrologic and geophysical properties of the subsurface to effectively model the …


Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data: Dataset, Ryan G. Smith, R. Knight Jan 2019

Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data: Dataset, Ryan G. Smith, R. Knight

Research Data

Supporting dataset for article published in Water Resources Research, Volume 55, Issue 4, pages 2801-2819


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans …


Mass Spectrometry Analysis Of Contaminants Of Emerging Concern: Nanoparticles, Algal Toxins, And Cyanotoxins In Natural Waters And Their Potential Health Impacts, Ariel R. Donovan Jan 2019

Mass Spectrometry Analysis Of Contaminants Of Emerging Concern: Nanoparticles, Algal Toxins, And Cyanotoxins In Natural Waters And Their Potential Health Impacts, Ariel R. Donovan

Doctoral Dissertations

“The analysis of contaminants of emerging concern is critical to protecting environmental health. In the presented dissertation, two groups of contaminants of emerging concern were assessed using mass spectrometry methods: nanoparticles and algal and cyanotoxins.

Analysis of metal oxide nanoparticles in environmental matrices has been a challenging issue, as most traditional methods require complicated sample preparation methods or that can alter or destroy the nanoparticles in the system. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) methods were used to detect metal oxide nanoparticles in surface waters and their removal through drinking water treatment simulations while retaining all information regarding …


Ferrite Characterization Techniques & Particle Simulations For Semiconductor Devices, Nicholas Erickson Jan 2019

Ferrite Characterization Techniques & Particle Simulations For Semiconductor Devices, Nicholas Erickson

Doctoral Dissertations

"This dissertation is divided into three papers, covering two major topics. The first topic, techniques for ferrite characterization, is discussed over the course of two papers. The second topic, particle simulations for semiconductor devices, is discussed in the last paper. In the first paper, the method for extracting permeability from ferrite materials is discussed for the Keysight 16454A permeability extraction fixture, where the ferrite material to be characterized is assumed to be homogeneous. Then the method is updated to account for layered materials. The updated method is verified through full-wave simulations. In the second paper, a planar printed circuit board …


Deep Neural Network Learning-Based Classifier Design For Big-Data Analytics, Krishnan Raghavan Jan 2019

Deep Neural Network Learning-Based Classifier Design For Big-Data Analytics, Krishnan Raghavan

Doctoral Dissertations

"In this digital age, big-data sets are commonly found in the field of healthcare, manufacturing and others where sustainable analysis is necessary to create useful information. Big-data sets are often characterized by high-dimensionality and massive sample size. High dimensionality refers to the presence of unwanted dimensions in the data where challenges such as noise, spurious correlation and incidental endogeneity are observed. Massive sample size, on the other hand, introduces the problem of heterogeneity because complex and unstructured data types must analyzed. To mitigate the impact of these challenges while considering the application of classification, a two step analysis approach is …


Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu Jan 2019

Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu

Doctoral Dissertations

"The current business model for many industrial firms is to function as system integrators, depending on numerous outsourced components from outside component suppliers. This practice has resulted in tremendous cost savings; it makes system reliability analysis, however, more challenging due to the limited component information available to system designers. The component information is often proprietary to component suppliers. Motivated by the need of system reliability prediction with outsourced components, this work aims to explore feasible ways to accurately predict the system reliability during the system design stage. Four methods are proposed. The first method reconstructs component reliability functions using limited …


Volumetric Error Compensation For Industrial Robots And Machine Tools, Le Ma Jan 2019

Volumetric Error Compensation For Industrial Robots And Machine Tools, Le Ma

Doctoral Dissertations

“A more efficient and increasingly popular volumetric error compensation method for machine tools is to compute compensation tables in axis space with tool tip volumetric measurements. However, machine tools have high-order geometric errors and some workspace is not reachable by measurement devices, the compensation method suffers a curve-fitting challenge, overfitting measurements in measured space and losing accuracy around and out of the measured space. Paper I presents a novel method that aims to uniformly interpolate and extrapolate the compensation tables throughout the entire workspace. By using a uniform constraint to bound the tool tip error slopes, an optimal model with …


Development Of A Switchable Radioisotope Generator, Kyle Mitchell Paaren Jan 2019

Development Of A Switchable Radioisotope Generator, Kyle Mitchell Paaren

Doctoral Dissertations

The Switchable Radioisotope Generator utilizes alpha-induced reactions to produce a combination of photons, neutrons, and protons with varying fluxes dependent on target materials and source geometry. The activity/strength of the secondary radiation is further controlled by manipulating the number of alpha particles that can interact with the target material(s). Analytical equations were solved to confirm secondary radiation production from target materials using average cross sections from TENDL data. TENDL and JENDL data was confirmed by analytically solving for the total alpha-induced cross sections. This information was used to produce the provisional and utility Patent No: US20190013109A1. TENDL data was then …


Experimental Investigation Of The Dynamics Of Trapped Non-Wetting Droplets Subjected To The Seismic Stimulation In Constricted Tubes: Supporting Information, Yandong Zhang, Chao Zeng, Baojun Bai, Wen Deng Jan 2019

Experimental Investigation Of The Dynamics Of Trapped Non-Wetting Droplets Subjected To The Seismic Stimulation In Constricted Tubes: Supporting Information, Yandong Zhang, Chao Zeng, Baojun Bai, Wen Deng

Research Data


Controlled Switching In Kalman Filtering And Iterative Learning Controls, He Li Jan 2019

Controlled Switching In Kalman Filtering And Iterative Learning Controls, He Li

Masters Theses

“Switching is not an uncommon phenomenon in practical systems and processes, for examples, power switches opening and closing, transmissions lifting from low gear to high gear, and air planes crossing different layers in air. Switching can be a disaster to a system since frequent switching between two asymptotically stable subsystems may result in unstable dynamics. On the contrary, switching can be a benefit to a system since controlled switching is sometimes imposed by the designers to achieve desired performance. This encourages the study of system dynamics and performance when undesired switching occurs or controlled switching is imposed. In this research, …


Three-Dimensional Nanotube Arrays For Solar Energy Harvesting And Production Of Solar Fuels, Wipula P. R. Liyanage Jan 2019

Three-Dimensional Nanotube Arrays For Solar Energy Harvesting And Production Of Solar Fuels, Wipula P. R. Liyanage

Doctoral Dissertations

"Over the past decade extensive research has been carried out on photovoltaic semiconductors to provide a solution towards a renewable energy future. Fabricating high-efficiency photovoltaic devices largely rely on nanostructuring the photoabsorber layers due to the ability of improving photoabsorption, photocurrent generation and transport in nanometer scale. Vertically aligned, highly uniform nanorods and nanowire arrays for solar energy conversion have been explored as potential candidates for solar energy conversion and solar-fuel generation owing to their enhanced photoconversion efficiencies.

However, controlled fabrication of nanorod and especially nanotube arrays with uniform size and shape and a pre-determined distribution density is still a …


Development Of Functional Ionic Liquids For Separation And Recovery Of Rare Earth Elements, Mostafa Khodakarami Jan 2019

Development Of Functional Ionic Liquids For Separation And Recovery Of Rare Earth Elements, Mostafa Khodakarami

Doctoral Dissertations

“This research focused on the design and synthesis of task-specific ionic liquids for enhanced extraction and separation of rare earth elements (REEs). Two novel ammonium-based functional ionic liquids (FILs) with oxygen donating groups: trioctyl(2-ethoxy-2-oxoethyl)ammonium dihexyl diglycolamate, [OcGBOEt][DHDGA], and tricaprylmethylammonium dihexyl diglycolamate, [A336][DHDGA] were synthesized and tested for the recovery and separation of selected REEs from aqueous solutions. Functionalities with different denticities were incorporated into both anionic and cationic parts of ionic liquids, which are solely composed of incinerable atoms including C, H, O, and N. The structural, physical, and chemical properties of the synthesized FILs were studied using nuclear magnetic …


Electrodeposition Of Epitaxial Metal Thin Films On Silicon For Energy Conversion And Flexible Electronics, Qingzhi Chen Jan 2019

Electrodeposition Of Epitaxial Metal Thin Films On Silicon For Energy Conversion And Flexible Electronics, Qingzhi Chen

Doctoral Dissertations

"This research focuses on epitaxial electrodeposition of two coinage metals: Au and Ag thin films on the silicon surface and their applications in flexible electronics and energy conversion and storage. The first paper: Photoelectrochemistry of ultrathin, semi-transparent, and catalytic gold films electrodeposited epitaxially onto n-silicon (111) describes the epitaxial electrodeposition of Au thin films on n-type Si using a simple HAuCl4 bath and the photoelectrochemical properties of the Au-Si junction barrier. The effect of the Au layer on the interfacial energetics as well as the stability of the photoelectrode as a function of the Au coverage/thickness is determined in a …


Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock Jan 2019

Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock

Doctoral Dissertations

"Electric solid propellants are advanced solid chemical rocket propellants that can be controlled (ignited, throttled and extinguished) through the application and removal of an electric current. These propellants are also being considered for use in ablative pulsed plasma thruster and multimode systems. In this work, the behavior and performance of a novel green electric solid propellant operating in an electrothermal ablation-fed pulsed plasma thruster was investigated. Using an inverted pendulum micro-Newton thrust stand, the impulse bit and specific impulse of the device using the electric solid propellant were measured for short-duration and long-duration runs to end-of-life, at energy levels of …


Evaluation Of Naturally Occurring And Anthropogenic Contamination In Missouri Streams, Christina Jane Sehrt Jan 2019

Evaluation Of Naturally Occurring And Anthropogenic Contamination In Missouri Streams, Christina Jane Sehrt

Masters Theses

"The goal of this study is to observe the values and variability of water quality parameters and benthic macroinvertebrates in watersheds with very little anthropogenic impact and to compare these values with those acquired in watersheds with more anthropogenic impact. The following five HUC 12-digit watersheds had very little anthropogenic impact and were considered "pristine": Rogers Creek, Mill Creek, Middle West Fork-Black River, Bee Fork, and Ottery Creek. Five largely urban sub-basins were also considered; these basins are: Grand Glaize Creek, Glaize Creek, Sugar Creek, Hominy Creek, and Grindstone Creek. For each watershed, both water quality parameters and benthic macroinvertebrates …


Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee Jan 2019

Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee

Doctoral Dissertations

"The morphology of a material is intrinsically a qualitative property and in order to relate nanomorphology to synthetic conditions, it is necessary to express nano/micro-structure quantitatively. In this context, polyurea aerogels were chosen as a model system with demonstrated potential for rich nanomorphology and being guided by a statistical Design-of-Experiments model, a large array of materials (208) with identical chemical composition, but quite different nanostructures were prepared. By reflecting upon the SEM images, it was realized that our first pre-verbal impression about a nanostructure is related to its openness and texture; the former is quantified by porosity (Π), and the …


Removal Of Antimony And Bismuth From Copper Electrorefining Electrolyte By Two Proprietary Solvent Extraction Extractants, Andrew Artzer Jan 2019

Removal Of Antimony And Bismuth From Copper Electrorefining Electrolyte By Two Proprietary Solvent Extraction Extractants, Andrew Artzer

Masters Theses

"Antimony and bismuth are two of the most problematic impurities in copper electrorefining (ER). Because of this, much research has been done investigating the ways to remove them. Processes that are currently being used industrially include anode additions, liberators, ion exchange (IX), and solvent extraction (SX). Of these, liberators and anode additions are the most common while SX is the least, mostly being used for arsenic removal. There are other methods that have been evaluated, but are not in commercial use. These include the use of various electrolyte additives, and adsorbents such as bentonite clay and heavy metal sulfates.

Two …


Less Is More: Beating The Market With Recurrent Reinforcement Learning, Louis Kurt Bernhard Steinmeister Jan 2019

Less Is More: Beating The Market With Recurrent Reinforcement Learning, Louis Kurt Bernhard Steinmeister

Masters Theses

"Multiple recurrent reinforcement learners were implemented to make trading decisions based on real and freely available macro-economic data. The learning algorithm and different reinforcement functions (the Differential Sharpe Ratio, Differential Downside Deviation Ratio and Returns) were revised and the performances were compared while transaction costs were taken into account. (This is important for practical implementations even though many publications ignore this consideration.) It was assumed that the traders make long-short decisions in the S&P500 with complementary 3-month treasury bill investments. Leveraged positions in the S&P500 were disallowed. Notably, the Differential Sharpe Ratio and the Differential Downside Deviation Ratio are risk …


Temporal Changes Of Nutrients Within The Lower Grand River Watershed And Selected Sites, Weston Scott Duley Jan 2019

Temporal Changes Of Nutrients Within The Lower Grand River Watershed And Selected Sites, Weston Scott Duley

Masters Theses

"This report presents the results of a study carried out in collaboration with the U.S. Geological Survey (USGS) and the Missouri Department of Natural Resources (MDNR) to estimate total nitrogen (TN) and total phosphorus (TP) at five USGS monitoring sites within Lower Grand River Watershed (LGRW) and two monitoring sites on the Missouri River. The objective of this study was to quantify temporal changes in TN and TP concentrations and compare those to best management practices (BMPs).

In this study, the approach to the analysis of long-term surface water-quality data by using Weighted Regressions on Time, Discharge and Seasons models …


Geophysical Imaging Beneath Lake Chesterfield, Missouri, James Daniell Hayes Jan 2019

Geophysical Imaging Beneath Lake Chesterfield, Missouri, James Daniell Hayes

Masters Theses

"Lake Chesterfield in Wildwood, Missouri, has been leaking since construction of the earth-fill dam was completed in 1986, despite numerous mitigation efforts. The mitigation efforts, including the injection of grouting and the emplacement of clay liners, has not solve the leakage problem.

In the current study, geophysical (subsurface imaging) data was acquired across the drained and dry lake bed and along the base of the earth-fill dam to 1) map variable depth to top of bedrock, 2) determine the variable quality of the bedrock to depths on the order of 80 ft., 3) identify any significant karst features beneath the …


Pressure Versus Impulse Graph For Blast-Induced Traumatic Brain Injury And Correlation To Observable Blast Injuries, Barbara Rutter Jan 2019

Pressure Versus Impulse Graph For Blast-Induced Traumatic Brain Injury And Correlation To Observable Blast Injuries, Barbara Rutter

Doctoral Dissertations

"With the increased use of explosive devices in combat, blast induced traumatic brain injury (bTBI) has become one of the signature wounds in current conflicts. Animal studies have been conducted to understand the mechanisms in the brain and a pressure versus time graph has been produced. However, the role of impulse in bTBIs has not been thoroughly investigated for animals or human beings.

This research proposes a new method of presenting bTBI data by using a pressure versus impulse (P-I) graph. P-I graphs have been found useful in presenting lung lethality regions and building damage thresholds. To present the animal …


Investigating Blast Fume Propagation, Concentration And Clearance In Underground Mines Using Computational Fluid Dynamics (Cfd), Raymond Ninnang Tiile Jan 2019

Investigating Blast Fume Propagation, Concentration And Clearance In Underground Mines Using Computational Fluid Dynamics (Cfd), Raymond Ninnang Tiile

Doctoral Dissertations

"Blasting activities using standard industry explosives is an essential component of underground hard rock mining operations. Blasting operations result in the release of noxious gases, presenting both safety and productivity threats. Overestimation of post-blast re-entry time results in production losses, while underestimation leads to injuries and fatalities. Research shows that most underground mines simply standardize post-blast re-entry times based on experiences and observations. Few underground mines use theoretical methods for calculating post-blast re-entry time. These theoretical methods, however, are unable to account for the variations in the blasting conditions. Literature review shows that: (i) there is currently no means of …