Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. May 2019

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Manufacturing And Testing The Permanent Magnet Linear Motor, Renjie Kang May 2019

Manufacturing And Testing The Permanent Magnet Linear Motor, Renjie Kang

Senior Theses

Controlled mechanical motion is vital in many useful applications in technology. Among them, linear motors have advantages over traditional rotating motors. In this work, we built a permanent magnet linear motor to test and measure its energy efficiency. A maximum 29% total energy efficiency, and 67% energy transfer rate, were detected. In addition, a C-shape support structure was added to the moving part in order to increase the moving accuracy. The tests show that, with the support structure, the fluctuation in the vertical direction decreases significantly, but the friction of the system slightly increases.