Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Engineering Physics

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 52

Full-Text Articles in Engineering

The First-Order Magnetoelastic Transition In Eu2in: A 151eu Mössbauer Study, D. H. Ryan, Durga Paudyal, Francois Guillou, Yaroslav Mudryk, Arjun K. Pathak, Vitalij K. Pecharsky Dec 2019

The First-Order Magnetoelastic Transition In Eu2in: A 151eu Mössbauer Study, D. H. Ryan, Durga Paudyal, Francois Guillou, Yaroslav Mudryk, Arjun K. Pathak, Vitalij K. Pecharsky

Ames Laboratory Accepted Manuscripts

Our 151Eu Mössbauer investigation of Eu2In and Eu2Sn shows that the europium in both materials is fully divalent. We confirm the distinct thermodynamic orders of the magnetic transitions and reveal a remarkable difference between the magnetic environments of the europium atoms in the two compounds. Possible structural and electronic origins for these differences are discussed using DFT calculations.


Microstructure Evolution During Near-Tg Annealing And Its Effect On Shear Banding In Model Alloys, Meng-Hao Yang, Bei Cai, Yang Sun, Feng Zhang, Yi-Fan Wang, Cai-Zhuang Wang, Kai-Ming Ho Dec 2019

Microstructure Evolution During Near-Tg Annealing And Its Effect On Shear Banding In Model Alloys, Meng-Hao Yang, Bei Cai, Yang Sun, Feng Zhang, Yi-Fan Wang, Cai-Zhuang Wang, Kai-Ming Ho

Ames Laboratory Accepted Manuscripts

By performing extensive molecular dynamics simulations, we investigate the deformation behavior in Al90Sm10 and Cu64.5Zr35.5 alloys after elongated isothermal annealing in the vicinity of the glass-transition temperature (Tg). Different microstructural response to the annealing process was observed: Al90Sm10 maintains the glassy structure with improved energetic stability, enhanced short-range order (SRO), and a more pronounced spatial network that extends beyond the first atomic shell, while Cu64.5Zr35.5 forms nanocrystalline Laves Cu2Zr phases. Shear banding occurs in both annealed systems under shear loading. For Al90Sm10, the spatial network formed by the local clusters characterizing the SRO of the system ...


Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo Dec 2019

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo

Theses and Dissertations

Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide (TMD) crystals offer unique optical and electronic properties that include strong exciton binding, spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced optical features. Excitation dynamics of these optical properties on physicochemically bonded mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical transmission UV-vis spectroscopic measurements. Initially, a novel and scalable method to unsettle van der Waals bonds in bulk TMDs to prepare ...


Studies Of Initial Growth Of Gan On Inn, Alaa Alnami Dec 2019

Studies Of Initial Growth Of Gan On Inn, Alaa Alnami

Theses and Dissertations

III-nitride materials have recently attracted much attention for applications in both the microelectronics and optoelectronics. For optoelectronic devices, III-nitride materials with tunable energy band gaps can be used as the active region of devices to enhance the absorption or emission. A such material is indium nitride (InN), which along with gallium nitride (GaN) and aluminum nitride (AlN) embody the very real promise of forming the basis of a broad spectrum, a high efficiency solar cell. One of the remaining complications in incorporating InN into a solar cell design is the effects of the high temperature growth of the GaN crystal ...


New Materials Physics, Paul C. Canfield Nov 2019

New Materials Physics, Paul C. Canfield

Ames Laboratory Accepted Manuscripts

This review presents a survey of, and guide to, new materials physics (NMP) research. It begins with an overview of the goals of NMP and then presents important ideas and techniques for the design and growth of new materials. An emphasis is placed on the use of compositional phase diagrams to inform and motivate solution growth of single crystals. The second half of this review focuses on the vital process of generating actionable ideas for the growth and discovery of new materials and ground states. Motivations ranging from (1) wanting a specific compound, to (2) wanting a specific ground state ...


Fabricating Fe Nanocrystals Via Encapsulation At The Graphite Surface, Ana Lii-Rosales, Yong Han, King C. Lai, Dapeng Jing, Michael C. Tringides, James W. Evans, Patricia A. Thiel Nov 2019

Fabricating Fe Nanocrystals Via Encapsulation At The Graphite Surface, Ana Lii-Rosales, Yong Han, King C. Lai, Dapeng Jing, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

In this paper, the authors describe the conditions under which Fe forms encapsulated nanocrystals beneath the surface of graphite, and they characterize these islands (graphite + Fe) thoroughly. The authors use the experimental techniques of scanning tunneling microscopy (STM) plus x-ray photoelectron spectroscopy (XPS) and the computational technique of density functional theory (DFT). Necessary conditions for encapsulation are preexisting ion-induced defects in the graphite substrate and elevated deposition temperature of 875–900 K. Evidence of encapsulation consists of atomically resolved STM images of a carbon lattice, both on top of the islands and on the sloping sides. The nature of the ...


Average Speech Directivity, Samuel D. Bellows, Claire M. Pincock, Jennifer K. Whiting, Timothy W. Leishman Nov 2019

Average Speech Directivity, Samuel D. Bellows, Claire M. Pincock, Jennifer K. Whiting, Timothy W. Leishman

Directivity

Speech directivity describes the angular dependence of acoustic radiation from a talker’s mouth and nostrils and diffraction about his or her body and chair (if seated). It is an essential physical aspect of communication affecting sounds and signals in acoustical environments, audio, and telecommunication systems. Because high-resolution, spherically comprehensive measurements of live, phonetically balanced speech have been unavailable in the past, the authors have undertaken research to produce and share such data for simulations of acoustical environments, optimizations of microphone placements, speech studies, and other applications. The measurements included three male and three female talkers who repeated phonetically balanced ...


Amorphous-Crystalline Brush Block Copolymers: Phase Behavior, Rheology And Composite Design, Gayathri Kopanati Oct 2019

Amorphous-Crystalline Brush Block Copolymers: Phase Behavior, Rheology And Composite Design, Gayathri Kopanati

Doctoral Dissertations

Bottlebrush block copolymers are polymers with chemically distinct polymer side chains grafted onto a common backbone. The unique architecture induced properties make these materials attractive for applications such as photonic materials, stimuli responsive actuators and drug delivery vehicles to name a few. This dissertation primarily investigates the phase transitions and rheological behavior of amorphous-crystalline bottlebrush brush block copolymers and their composites. The temperature induced phase behavior is investigated using time resolved synchrotron X-ray source. Irrespective of volume fraction and backbone length, the samples display strong segregation even at high temperatures (200 °C) and there is no accessible order-disorder transition in ...


Magnetocaloric Effect Near Room Temperature In Quintenary And Sextenary Heusler Alloys, Benjamin D. White, R. I. Barabash, O. M. Barabash, I. Jeon, M. B. Maple Oct 2019

Magnetocaloric Effect Near Room Temperature In Quintenary And Sextenary Heusler Alloys, Benjamin D. White, R. I. Barabash, O. M. Barabash, I. Jeon, M. B. Maple

All Faculty Scholarship for the College of the Sciences

An inverse magnetocaloric effect is studied in Ni2Mn1+xX1-x-type Heusler alloys. Principally known for their shape-memory properties, these alloys also exhibit significant entropy and temperature changes (ΔS and ΔTAd, respectively) under adiabatic conditions when a modest magnetic field is applied. We investigated the impact on magnetocaloric properties of introducing substantial chemical disorder on the X-site (X = Si, Ga, In), of replacing Ni with nonmagnetic Ag, and of replacing a small amount of Mn with Gd. While a reduction in ΔS is observed in the first two cases, we observe a significant enhancement of ...


Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans Oct 2019

Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans

Ames Laboratory Accepted Manuscripts

Diffusion and coalescence of supported 3D metal nanoclusters (NCs) leads to Smoluchowski Ripening (SR), a key pathway for catalyst degradation. Variation of the NC diffusion coefficient, DN, with size N (in atoms) controls SR kinetics. Traditionally, a form DN ∼ N−β was assumed consistent with mean-field analysis. However, KMC simulation of a stochastic model for diffusion of {100}-epitaxially supported fcc NCs mediated by surface diffusion reveals instead a complex oscillatory decrease of DN with N. Barriers for surface diffusion of metal atoms across and between facets, along step edges, etc., in this model are selected to accurately capture behavior ...


Rational Design Of Photoelectrodes For Photoelectrochemical Water Splitting And Co2 Reduction, Yu Hui Lui, Bowei Zhang, Shan Hu Oct 2019

Rational Design Of Photoelectrodes For Photoelectrochemical Water Splitting And Co2 Reduction, Yu Hui Lui, Bowei Zhang, Shan Hu

Mechanical Engineering Publications

Solar energy has promising potential for building sustainable society. Conversion of solar energy into solar fuels plays a crucial role in overcoming the intermittent nature of the renewable energy source. A photoelectrochemical (PEC) cell that employs semiconductor as photoelectrode to split water into hydrogen or fixing carbon dioxide (CO2) into hydrocarbon fuels provides great potential to achieve zero-carbon-emission society. A proper design of these semiconductor photoelectrodes thus directly influences the performance of the PEC cell. In this review, we investigate the strategies that have been put towards the design of efficient photoelectrodes for PEC water splitting and CO2 reduction in ...


Atomically Resolved Domain Boundary Structure In Lead Zirconate-Based Antiferroelectrics, Tao Ma, Zhongming Fan, Xiaoli Tan, Lin Zhou Sep 2019

Atomically Resolved Domain Boundary Structure In Lead Zirconate-Based Antiferroelectrics, Tao Ma, Zhongming Fan, Xiaoli Tan, Lin Zhou

Materials Science and Engineering Publications

Domain boundary (DB) structures are of great importance for understanding the structure-property relationship in many ferroic crystals. Here, we present atomically resolved DB configurations in PbZrO3-based antiferroelectric ceramics. The Pb-cation displacement relative to B-site cations is precisely determined using aberration-corrected scanning transmission electron microscopy. We find that 90° DBs in undoped PbZrO3 can be as thin as one primitive cell of the perovskite structure, often appearing curved or zigzagged due to the complex dipole arrangement. In a chemically modified composition, Pb0.99Nb0.02[(Zr0.57Sn0.43)0.95Ti0.05]0.98O3, in which incommensurate modulations are present, the DB has ...


Targeted Germanium Ion Irradiation Of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors, Melanie E. Mace Aug 2019

Targeted Germanium Ion Irradiation Of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors, Melanie E. Mace

Theses and Dissertations

Microscale beams of germanium ions were used to target different locations of aluminum galliumnitride/gallium nitride (AlGaN/GaN) high electron mobility transistors (HEMTs) to determine location dependent radiation effects. 1.7 MeV Ge ions were targeted at the gap between the gate and the drain to observe displacement damage effects while 47 MeV Ge ions were targeted at the gate to observe ionization damage effects. Electrical data was taken pre, during, and post irradiation. To separate transient from permanent degradation, the devices were characterized after a room temperature anneal for at least 30 days. Optical images were also analyzed pre ...


Nonlinear Estimation And Control Methods For Mechanical And Aerospace Systems Under Actuator Uncertainty, Krishna Bhavithavya Kidambi Aug 2019

Nonlinear Estimation And Control Methods For Mechanical And Aerospace Systems Under Actuator Uncertainty, Krishna Bhavithavya Kidambi

PhD Dissertations and Master's Theses

Air flow velocity field control is of crucial importance in aerospace applications to prevent the potentially destabilizing effects of phenomena such as cavity ow oscillations, flow separation, flow-induced limit cycle oscillations (LCO) (flutter), vorticity, and acoustic instabilities. Flow control is also important in aircraft applications to reduce drag in aircraft wings for improved flight performance. Although passive flow control approaches are often utilized due to their simplicity, active flow control (AFC) methods can achieve improved flight performance over a wider range of time-varying operating conditions by automatically adjusting their level of control actuation in response to real-time sensor measurements. Although ...


Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison Aug 2019

Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison

Journal Articles

Wireless intraspacecraft communication technology is being developed for signal transfer on space missions to save weight and simplify the design. One consideration for this new technology is its interaction with space environmentinduced electrostatic discharges (ESDs). The short time scales of spacecraft ESD events result in broad frequency band signals that can interact with high-frequency wireless antennas. These interactions present a source of signal noise. However, they also present a possibility of in-flight wireless ESD monitoring. We present laboratory measurements of arcing on common spacecraft insulators using commercially available single-band 2.4-GHz and dual-band 2.4-/5.8-GHz Wi-Fi antennas. These ...


Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison Aug 2019

Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison

Journal Articles

Total, secondary, and backscatter electron yield data were taken with beam energies between 15 eV and 30 keV, in conjunction with energy emission data, to determine the extent of suppression of yield caused by carbon nanotube (CNT) forest coatings on substrates. CNT forests can potentially lower substrate yield due to both its inherently low-yield, low-atomic number (Z) carbon composition, and its bundled, high-aspect ratio structure. Rough surfaces, and in particular, surfaces with deep high-aspect-ratio voids, can suppress yields, as the electrons emitted from lower lying surfaces are recaptured by surface protrusions rather than escaping the near-surface region. Yields of multilayered ...


Optoelectronic Properties Of Methyl-Terminated Germanane, Clément Livache, Bradley J. Ryan, Utkarsh Ramesh, Violette Steinmetz, Charlie Gréboval, Audrey Chu, Thibault Brule, Sandrine Ithurria, Geoffrey Prévot, Thierry Barisien, Abdelkarim Ouerghi, Matthew G. Panthani, Emmanuel Lhuillier Aug 2019

Optoelectronic Properties Of Methyl-Terminated Germanane, Clément Livache, Bradley J. Ryan, Utkarsh Ramesh, Violette Steinmetz, Charlie Gréboval, Audrey Chu, Thibault Brule, Sandrine Ithurria, Geoffrey Prévot, Thierry Barisien, Abdelkarim Ouerghi, Matthew G. Panthani, Emmanuel Lhuillier

Chemical and Biological Engineering Publications

Germanane is a two-dimensional, strongly confined form of germanium. It presents an interesting combination of (i) ease of integration with CMOS technology, (ii) low toxicity, and (iii) electronic confinement which transforms the indirect bandgap of the bulk material into a direct bandgap featuring photoluminescence. However, the optoelectronic properties of this material remain far less investigated than its structural properties. Here, we investigate the photoluminescence and transport properties of arrays of methyl-terminated germanane flakes. The photoluminescence appears to have two contributions, one from the band edge and the other from trap states. The dynamics of the exciton appear to be in ...


Interplay Between Superconductivity And Itinerant Magnetism In Underdoped Ba1−Xkxfe2as2 (X = 0.2) Probed By The Response To Controlled Point-Like Disorder, Ruslan Prozorov, Marcin Kończykowski, Makariy A. Tanatar, Hai-Hu Wen, Rafael M. Fernandes, Paul C. Canfield Jul 2019

Interplay Between Superconductivity And Itinerant Magnetism In Underdoped Ba1−Xkxfe2as2 (X = 0.2) Probed By The Response To Controlled Point-Like Disorder, Ruslan Prozorov, Marcin Kończykowski, Makariy A. Tanatar, Hai-Hu Wen, Rafael M. Fernandes, Paul C. Canfield

Ames Laboratory Accepted Manuscripts

The response of superconductors to controlled introduction of point-like disorder is an important tool to probe their microscopic electronic collective behavior. In the case of iron-based superconductors, magnetic fluctuations presumably play an important role in inducing high-temperature superconductivity. In some cases, these two seemingly incompatible orders coexist microscopically. Therefore, understanding how this unique coexistence state is affected by disorder can provide important information about the microscopic mechanisms involved. In one of the most studied pnictide family, hole-doped Ba1−xKxFe2As2 (BaK122), this coexistence occurs over a wide range of doping levels, 0.16 ≲ x ≲ 0.25. We used ...


Magnetocaloric Effect Of Micro- And Nanoparticles Of Gd5si4, S. M. Harstad, A. A. El-Gendy, Shalabh Gupta, Vitalij K. Pecharsky, R. L. Hadimani Jul 2019

Magnetocaloric Effect Of Micro- And Nanoparticles Of Gd5si4, S. M. Harstad, A. A. El-Gendy, Shalabh Gupta, Vitalij K. Pecharsky, R. L. Hadimani

Ames Laboratory Accepted Manuscripts

Materials exhibiting a large magnetocaloric effect (MCE) at or near room temperature are critical for solid-state refrigeration applications. The MCE is described by a change in entropy (ΔSM) and/or temperature (ΔTad) of a material in response to a change in applied magnetic field. Ball milled materials generally exhibit smaller ΔSM values compared to bulk; however, milling broadens the effect, potentially increasing the relative cooling power (RCP). The as-cast Gd5Si4 is an attractive option due to its magnetic transition at 340 K and associated MCE. Investigation of effect of particles size and transition temperature ...


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and ...


Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin Jul 2019

Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin

Honors Projects

A 3D printed hand and arm prosthetic was created from the idea of adding bionic elements while keeping the cost low. It was designed based on existing models, desired functions, and materials available. A tilt sensor keeps the hand level, two motors move the wrist in two different directions, a limit switch signals the fingers to open and close, and another motor helps open and close the fingers. All sensors and motors were built on a circuit board, programmed using an Arduino, and powered by a battery. Other supporting materials include metal brackets, screws, guitar strings, elastic bands, small clamps ...


In Situ Tem Study Of The Transitions Between Crystalline Si And Nonstoichiometric Amorphous Oxide Under Bipolar Voltage Bias, Xinchun Tian, Tao Ma, Lin Zhou, Geoff Brennecka, Xiaoli Tan Jun 2019

In Situ Tem Study Of The Transitions Between Crystalline Si And Nonstoichiometric Amorphous Oxide Under Bipolar Voltage Bias, Xinchun Tian, Tao Ma, Lin Zhou, Geoff Brennecka, Xiaoli Tan

Materials Science and Engineering Publications

The electrical responses, either structurally or chemically, at the interface between a SiO2 thin film and a single crystalline Si substrate are an important research subject in Si-based devices. Dielectric breakdown-induced epitaxial migration of Si into SiO2 has been reported as a degradation mechanism in field effect transistors. Here, we show a direct observation of electric field induced conversion of single crystalline Si to nonstoichiometric amorphous oxide starting from the Si/native oxide interface using in situ transmission electron microscopy. We further show that nanocrystalline Si can form in the amorphous oxide under a voltage bias of reversed polarity. Electron ...


Interaction Dynamics Between Ferroelectric And Antiferroelectric Domains In A Pbzro3-Based Ceramic, Zhongming Fan, Fei Xue, Goknur Tutuncu, Long-Qing Chen, Xiaoli Tan Jun 2019

Interaction Dynamics Between Ferroelectric And Antiferroelectric Domains In A Pbzro3-Based Ceramic, Zhongming Fan, Fei Xue, Goknur Tutuncu, Long-Qing Chen, Xiaoli Tan

Materials Science and Engineering Publications

The antiferroelectric-ferroelectric phase transition in PbZrO3-based oxides is of both fundamental and practical importance. In ceramics in which such a transition readily occurs, the antiferroelectric and the ferroelectric phases often coexist in individual grains with a coherent interphase interface. In this work, the electric biasing in situ transmission electron microscopy technique is employed to directly observe a unique microstructural dynamic when ferroelectric and antiferroelectric domains are driven by a moderate electric field to interact. It is found that, under monotonic loading, the ferroelectric domain grows until it is blocked by the ferroelectric-antiferroelectric interface. At the same time, a kink is ...


Ultrahigh Elastically Compressible And Strain-Engineerable Intermetallic Compounds Under Uniaxial Mechanical Loading, Gyuho Song, Vladislav Borisov, William Meier, Mingyu Xu, Keith J. Dusoe, John T. Sypek, Roser Valentí, Paul C. Canfield, Seok-Woo Lee Jun 2019

Ultrahigh Elastically Compressible And Strain-Engineerable Intermetallic Compounds Under Uniaxial Mechanical Loading, Gyuho Song, Vladislav Borisov, William Meier, Mingyu Xu, Keith J. Dusoe, John T. Sypek, Roser Valentí, Paul C. Canfield, Seok-Woo Lee

Ames Laboratory Accepted Manuscripts

Intermetallic compounds possess unique atomic arrangements that often lead to exceptional material properties, but their extreme brittleness usually causes fracture at a limited strain of less than 1% and prevents their practical use. Therefore, it is critical for them to exhibit either plasticity or some form of structural transition to absorb and release a sufficient amount of mechanical energy before failure occurs. This study reports that the ThCr2Si2-structured intermetallic compound (CaFe2As2) and a hybrid of its structure (CaKFe4As4) with 2 µm in diameter and 6 µm in height can exhibit superelasticity with strain up to 17% through a reversible, deformation-induced ...


An Investigation Of The Anomalous Thrust Capabilities Of The Electromagnetic Drive, Hannah J. Simons Jun 2019

An Investigation Of The Anomalous Thrust Capabilities Of The Electromagnetic Drive, Hannah J. Simons

Physics

The Electromagnetic Drive (EMDrive) is a propellant-less engine concept hypothesized by aero- space engineer Roger Shawyer. Shawyer’s proposed thruster technology is grounded on the theory of electromagnetic resonant behavior exhibited by a radiofrequency cavity, though the source of any generated thrust is undetermined by current physical laws. NASA Eagleworks Laboratories at John- son Space Center conducted a vacuum test campaign to investigate previously reported anomalous thrust capabilities of such a closed radiofrequency cavity, using a low-thrust torsion pendulum. The team published positive, although small-scaled thrust results in 2017. Following NASA Eagleworks breakthrough result and operating under the assumption that ...


High Resolution Validation Of Next Generation Turbulent Flow Models Using Neutron Beams, Laser Fluorescence, And Cryogenic Helium, Landen G Mcdonald May 2019

High Resolution Validation Of Next Generation Turbulent Flow Models Using Neutron Beams, Laser Fluorescence, And Cryogenic Helium, Landen G Mcdonald

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Turbulent fluid flow is an incredibly unpredictable subject that continues to confound scientists and engineers. All of the empirical data that has been the basis of conventional turbulent computational fluid dynamics (CFD) models for decades only extends to roughly the equivalent turbulence created when Michael Phelps swims in a pool. The problem is that this data is then extrapolated out many orders of magnitude in order to design cruise ships, airplanes, and rockets which operate in significantly more turbulent flow regimes. This creates an incredible degree of uncertainty in the design process that demands over-engineering and increased expenditures.

The development ...


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino May 2019

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Undergraduate Theses and Capstone Projects

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats and an increasing popularity of self-driving cars. We simulated the motion of an autonomous vehicle using computational models. The simulation models the motion of a small-scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as various biases ...


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and ...


Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. May 2019

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential ...