Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Modeling And Characterization Of A Ring-Resonator Based Silicon Photonic Sensor On Silicon-On-Insulator (Soi), Gwangho Choi May 2019

Modeling And Characterization Of A Ring-Resonator Based Silicon Photonic Sensor On Silicon-On-Insulator (Soi), Gwangho Choi

Graduate Theses - Physics and Optical Engineering

The purpose of this work is to build silicon photonic devices and verify their functionalities. In particular, the structure of a ring resonator (RR) is analyzed and applied to various silicon photonic application in sensing. Silicon waveguides, grating couplers, directional couplers, and RRs are fabricated on the silicon-on-insulator (SOI) wafer. Geometrical parameters and optical properties of the silicon devices are studied and also applied to the design of the aforementioned devices. The waveguide dimensions and, optical properties of the silicon waveguide such as dispersion and effective-index are examined. The RRs are made of a series of straight and bent waveguides …


Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts May 2019

Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts

Graduate Theses - Physics and Optical Engineering

Hyperbolic metamaterials (HMMs) show extreme anisotropy, acting as metals and dielectrics along orthogonal directions. They are designed using the effective medium theory (EMT) and can be fabricated using standard semiconductor processing techniques. Current techniques used to characterize the optical behavior of HMMs have a high complexity or are unable to robustly determine the complex permittivity tensor. We describe the details of a procedure to obtain a very low mean-squared-error (MSE) for extraction of permittivity from hyperbolic metamaterials using spectroscopic ellipsometry. We have verified our procedure by fabricating three different samples of various materials and fill factors designed to have a …


Hybrid Optical Integrator Based On Silicon-On-Insulator Platform, Taewon Huh Jan 2019

Hybrid Optical Integrator Based On Silicon-On-Insulator Platform, Taewon Huh

Graduate Theses - Physics and Optical Engineering

A hybrid optical integrator is a recirculating loop that performs oversampling typically for analog input, using the cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA). The modulated input signal changes the gain of the loop through XGM and thus modifies the loop accumulation. This thesis presents hybrid optical integrator for an all-optical analog-to-digital converter based on a silicon photonics platform. The device consists of silicon waveguides of dimension 220 × 500 nm (thick × width) and approximately 5 m optical loop length including fiber length, input and output grating couplers for 1550 nm signal, directional couplers, and external components …


Nanoscale Tilt Measurement Using A Cyclic Interferometer With Phase Stepping And Multiple Reflections, Tahereh Naderishahab Jul 2017

Nanoscale Tilt Measurement Using A Cyclic Interferometer With Phase Stepping And Multiple Reflections, Tahereh Naderishahab

Graduate Theses - Physics and Optical Engineering

High accuracy tilt or roll angle measurement is required for a variety of engineering and scientific applications. Optical interferometry is normally used because it is non-contact and can measure tilt with a very high degree of accuracy. In this thesis, a cyclic interferometer has been developed with four mirrors to measure tilt angles as small as a few nanoradians. To measure the phase, a novel and simple method of phase shift by polarization was developed to enhance measurement sensitivity and accuracy. Since the cyclic interferometer is insensitive to external vibrations and turbulences, polarization phase step was accomplished with relative ease. …


Designs And Reliability Evaluations Of A Scattered Light Measurement System, Kang-Min Lee Aug 2016

Designs And Reliability Evaluations Of A Scattered Light Measurement System, Kang-Min Lee

Graduate Theses - Physics and Optical Engineering

The purpose of my work was to develop an in-plane stray light measurement system having the advantage of being easily applicable in both motion control and optical configurations. First of all, mechanical designs were conducted based on both 3D modeling and structural analysis through a finite element method (FEM). Optical configurations for both the incident source and the detector were designed to achieve minimum observed source convergence angle of the system. The control panel and micro stepping system were programmed for automated measurement. Finally, the designed system was calibrated and aligned. In order to evaluate the system reliability for scatter …


Surface Roughness Effects On Light Propagation In Optical Light Pipes, Youngjin Park Jul 2016

Surface Roughness Effects On Light Propagation In Optical Light Pipes, Youngjin Park

Graduate Theses - Physics and Optical Engineering

Solid- and hollow-core light pipes are commonly employed to shape the intensity profile of high power lasers for applications in various technology industries such as the automobile, medical, and communications. There are several loss mechanisms present in solid-core glass and polymer light pipes, including absorption, bulk scattering in the material, surface scattering at the material-air interface, and Fresnel Loss at the material-air interface. Fresnel reflection and surface scattering losses typically dominate over other loss mechanisms in solid-core light pipes made of high quality optical materials. In order to analyze the losses in the light pipe, an approximate model is developed …


Optical Bistability In A Vcsel Coupled To Serially-Connected Pin Photodiodes Quantizer Device, Sanaz Faryadras Jun 2016

Optical Bistability In A Vcsel Coupled To Serially-Connected Pin Photodiodes Quantizer Device, Sanaz Faryadras

Graduate Theses - Physics and Optical Engineering

In this work we investigated the structure and performance of vertical cavity surface emitting lasers (VCSEL) which will be used in building an optical quantizer. In any p-i-n structure, capacitance is the most important factor in deciding the highest modulation speed. Therefore, components with smaller capacitance would show higher switching speed. A novel electrical quantizer was constructed using two identical 850 nm Finisar VCSELs, which could manifest electrical switching up to 1.4 MHz. Also, a new electrical quantizer was built with two Eudyna PIN photodiodes (PD-PD), which works at higher frequencies up to 8 MHz, comparing to previous works. The …


Development And Validation Of An Empirical Temperature-Dependent Voltage Model For Diode Laser Characterization, Grant Matthew Brodnik May 2016

Development And Validation Of An Empirical Temperature-Dependent Voltage Model For Diode Laser Characterization, Grant Matthew Brodnik

Graduate Theses - Physics and Optical Engineering

This work investigates the effects of temperature on the operation and performance of indium-phosphide (InP) based high-power broad-area laser (BAL) diodes operating in the eye-safe regime (1.5 μm – 2.0 μm). Low temperature (-80C to 0C) operation using a cryogenically cooled system enables investigation of temperature-dependent parameters such as threshold current, slope efficiency, diode voltage, and power conversion efficiency (PCE) of devices. Building upon established empirical models that describe threshold current and slope efficiency as functions of temperature, a key additional parametric model is developed to describe diode voltage incorporating a temperature dependence. With the inclusion of this temperature-dependent voltage …


Bending Loss Mitigation By Surface Plasmon Resonance, Daniel Steven Spoor May 2016

Bending Loss Mitigation By Surface Plasmon Resonance, Daniel Steven Spoor

Graduate Theses - Physics and Optical Engineering

Surface plasmon resonance can be used to confine a wave within a thin metal film. The resultant wave is very well-confined by the extreme refractive index difference between the metal and the ambient medium. Such confinement can be used to guide waves under extreme conditions such as subwavelength channels or through extremely tight bends where radiation losses would normally dissipate the wave.

A nichrome thin film was deposited and etched as a shadow alongside a series of multi-mode SU-8 slab waveguides with extremely sharp angled bends. Light from a Helium-Neon laser was coupled into these waveguides and the power transmitted …


Study Of Surface Plasmon Resonance In Metal And Alloy Nanofilms Using Maxwell Description And Metamaterial Simulation In Comsol, Heesoo Park Aug 2015

Study Of Surface Plasmon Resonance In Metal And Alloy Nanofilms Using Maxwell Description And Metamaterial Simulation In Comsol, Heesoo Park

Graduate Theses - Physics and Optical Engineering

Metamaterials are artificial metallic structures having, possibly, simultaneously negative permittivity and negative permeability which is called a double negative medium. To achieve a visible light range of the metamaterial, the unit cell of the metamaterial units should be 10-200nm. It is a much bigger structure than a size of normal atom. Still, the resolution of fabrication, which is difficult part, should typically be a few nanometers to achieve a nano-level unit. We study Ag thin-film as a convenient candidate for metamaterial over a specific frequency range. Because, the thin film metal is composed of disk shape island structures itself. These …


Increasing The Sensitivity Of The Michelson Interferometer Through Multiple Reflection, Woonghee Youn Aug 2015

Increasing The Sensitivity Of The Michelson Interferometer Through Multiple Reflection, Woonghee Youn

Graduate Theses - Physics and Optical Engineering

Michelson interferometry has been one of the most famous and popular optical interference system for analyzing optical components and measuring optical metrology properties. Typical Michelson interferometer can measure object displacement with wavefront shapes to one half of the laser wavelength. As testing components and devices size reduce to micro and nano dimension, Michelson interferometer sensitivity is not suitable. The purpose of this study is to design and develop the Michelson interferometer using the concept of multiple reflections. This thesis proposes a new and novel design for a multiple reflection interferometer, where the number of reflections does not affect the quality …


Study Of Laser Speckle Scattering In Vitreous Humor Models, Wanseok Oh May 2015

Study Of Laser Speckle Scattering In Vitreous Humor Models, Wanseok Oh

Graduate Theses - Physics and Optical Engineering

When a highly high coherent light propagates through a medium, interactions between light and the medium produces a unique intensity speckle pattern that is dependent on several factors such as particle size in the medium, wavelength of the light, concentration of medium, and scattering angle. Speckle patterns from either static or dynamic specimens have been studied using optical techniques due to its non-invasive nature. Speckle patterns from biological specimens (dynamic) are different from that of the static specimens since random movement of molecules (Brownian motion) in the biological specimen affect the light interactions and thereby the intensity of the speckles …


Optical Bistability With Two Serially Integrated Inp-Soas On A Chip, Michael Edward Plascak May 2015

Optical Bistability With Two Serially Integrated Inp-Soas On A Chip, Michael Edward Plascak

Graduate Theses - Physics and Optical Engineering

A photonic switch using two series-connected, reverse-biased semiconductor optical amplifiers integrated onto a single device has been proposed and switching operation has been verified experimentally. The switching operates on two principles; an electrical bistability arising from the connection of two p-i-n structures in series, and the quantum confined Stark effect in reverse-biased multiple quantum well structures. The result is an electroabsorption modulation of the light through the SOAs due to the alternating voltage states. The system simultaneously produces outputs with both inverted and non-inverted hysteresis behavior, with experimental switching speeds demonstrated up to 400 kHz for a reverse-bias voltage of …


Quantitative Data Extraction Using Spatial Fourier Transform In Inversion Shear Interferometer, Yanzeng Li Aug 2014

Quantitative Data Extraction Using Spatial Fourier Transform In Inversion Shear Interferometer, Yanzeng Li

Graduate Theses - Physics and Optical Engineering

Currently there are many interferometers used for testing wavefront, measuring the quality of optical elements, and detecting refractive index changes in a certain medium. Each interferometer has been constructed for a specific objective. Inversion shear interferometer is one of them. Compared to other interferometers, it has its own advantages, such as only being sensitive to coma aberration, but it has some limitations as well. It does not allow use of phase shifting technique. A novel inversion shear interferometer was invented using holographic lenses. By using the spatial carrier method, phase information of the wavefront was extracted. The breakthrough of the …


All-Optical Sigma-Delta Modulator For Analog-To-Digital Conversion, Bin Zhang Jul 2013

All-Optical Sigma-Delta Modulator For Analog-To-Digital Conversion, Bin Zhang

Graduate Theses - Physics and Optical Engineering

In this thesis, an all-optical sigma-delta (ΣΔ) modulator for analog-to-digital conversion (ADC) using a novel optical bistable switch, the SOA-PD device, is demonstrated. The presented all-optical ΣΔ modulator consists of a photonic leaky integrator, the SOA-PD optical comparator, and a positive feedback loop. The switching properties of the SOA-PD device are studied and experimentally tested to confirm its performance. Then the all-optical ΣΔ modulator is designed according to the switching performance of the SOA-PD device. It is demonstrated that the all-optical ΣΔ modulator is capable of producing an inverted non-return-to-zero (NRZ) type binary output for frequencies in the range of …