Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning Aug 2020

Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning

Electrical & Computer Engineering Theses & Disssertations

Mobile devices are becoming smarter to satisfy modern user's increasing needs better, which is achieved by equipping divers of sensors and integrating the most cutting-edge Deep Learning (DL) techniques. As a sophisticated system, it is often vulnerable to multiple attacks (side-channel attacks, neural backdoor, etc.). This dissertation proposes solutions to maintain the cyber-hygiene of the DL-Based smartphone system by exploring possible vulnerabilities and developing countermeasures.

First, I actively explore possible vulnerabilities on the DL-Based smartphone system to develop proactive defense mechanisms. I discover a new side-channel attack on smartphones using the unrestricted magnetic sensor data. I demonstrate that attackers ...


Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez Jan 2020

Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez

Open Access Theses & Dissertations

With the ever-increasing demands in the space domain and accessibility to low-cost small satellite platforms for educational and scientific projects, efforts are being made in various technology capacities including robotics and artificial intelligence in microgravity. The MIRO Center for Space Exploration and Technology Research (cSETR) prepares the development of their second nanosatellite to launch to space and it is with that opportunity that a 3-DOF robotic arm is in development to be one of the payloads in the nanosatellite. Analyses, hardware implementation, and testing demonstrate a potential positive outcome from including the payload in the nanosatellite and a deep learning ...


Fault Detection And Classification Of A Single Phase Inverter Using Artificial Neural Networks, Ayomikun Samuel Orukotan Jan 2020

Fault Detection And Classification Of A Single Phase Inverter Using Artificial Neural Networks, Ayomikun Samuel Orukotan

All Graduate Theses, Dissertations, and Other Capstone Projects

The detection of switching faults of power converters or the Circuit Under Test (CUT) is real-time important for safe and efficient usage. The CUT is a single-phase inverter. This thesis presents two unique methods that rely on backpropagation principles to solve classification problems with a two-layer network. These mathematical algorithms or proposed networks are able to diagnose single, double, triple, and multiple switching faults over different iterations representing range of frequencies. First, the fault detection and classification problems are formulated as neural network-based classification problems and the neural network design process is clearly described. Then, neural networks are trained over ...