Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Analysis Of Gpu Memory Vulnerabilities, Jarrett Hoover May 2022

Analysis Of Gpu Memory Vulnerabilities, Jarrett Hoover

Computer Science and Computer Engineering Undergraduate Honors Theses

Graphics processing units (GPUs) have become a widely used technology for various purposes. While their intended use is accelerating graphics rendering, their parallel computing capabilities have expanded their use into other areas. They are used in computer gaming, deep learning for artificial intelligence and mining cryptocurrencies. Their rise in popularity led to research involving several security aspects, including this paper’s focus, memory vulnerabilities. Research documented many vulnerabilities, including GPUs not implementing address space layout randomization, not zeroing out memory after deallocation, and not initializing newly allocated memory. These vulnerabilities can lead to a victim’s sensitive data being leaked to an …


Contrastive Learning For Unsupervised Auditory Texture Models, Christina Trexler Dec 2021

Contrastive Learning For Unsupervised Auditory Texture Models, Christina Trexler

Computer Science and Computer Engineering Undergraduate Honors Theses

Sounds with a high level of stationarity, also known as sound textures, have perceptually relevant features which can be captured by stimulus-computable models. This makes texture-like sounds, such as those made by rain, wind, and fire, an appealing test case for understanding the underlying mechanisms of auditory recognition. Previous auditory texture models typically measured statistics from auditory filter bank representations, and the statistics they used were somewhat ad-hoc, hand-engineered through a process of trial and error. Here, we investigate whether a better auditory texture representation can be obtained via contrastive learning, taking advantage of the stationarity of auditory textures to …


Data Forgery Detection In Automatic Generation Control: Exploration Of Automated Parameter Generation And Low-Rate Attacks, Yatish R. Dubasi May 2021

Data Forgery Detection In Automatic Generation Control: Exploration Of Automated Parameter Generation And Low-Rate Attacks, Yatish R. Dubasi

Computer Science and Computer Engineering Undergraduate Honors Theses

Automatic Generation Control (AGC) is a key control system utilized in electric power systems. AGC uses frequency and tie-line power flow measurements to determine the Area Control Error (ACE). ACE is then used by the AGC to adjust power generation and maintain an acceptable power system frequency. Attackers might inject false frequency and/or tie-line power flow measurements to mislead AGC into falsely adjusting power generation, which can harm power system operations. Various data forgery detection models are studied in this thesis. First, to make the use of predictive detection models easier for users, we propose a method for automated generation …


Using Deep Learning To Analyze Materials In Medical Images, Carson Molder May 2021

Using Deep Learning To Analyze Materials In Medical Images, Carson Molder

Computer Science and Computer Engineering Undergraduate Honors Theses

Modern deep learning architectures have become increasingly popular in medicine, especially for analyzing medical images. In some medical applications, deep learning image analysis models have been more accurate at predicting medical conditions than experts. Deep learning has also been effective for material analysis on photographs. We aim to leverage deep learning to perform material analysis on medical images. Because material datasets for medicine are scarce, we first introduce a texture dataset generation algorithm that automatically samples desired textures from annotated or unannotated medical images. Second, we use a novel Siamese neural network called D-CNN to predict patch similarity and build …


A Capacitive Sensing Gym Mat For Exercise Classification & Tracking, Adam Goertz May 2020

A Capacitive Sensing Gym Mat For Exercise Classification & Tracking, Adam Goertz

Computer Science and Computer Engineering Undergraduate Honors Theses

Effective monitoring of adherence to at-home exercise programs as prescribed by physiotherapy protocols is essential to promoting effective rehabilitation and therapeutic interventions. Currently physical therapists and other health professionals have no reliable means of tracking patients' progress in or adherence to a prescribed regimen. This project aims to develop a low-cost, privacy-conserving means of monitoring at-home exercise activity using a gym mat equipped with an array of capacitive sensors. The ability of the mat to classify different types of exercises was evaluated using several machine learning models trained on an existing dataset of physiotherapy exercises.


Music Feature Matching Using Computer Vision Algorithms, Mason Hollis May 2017

Music Feature Matching Using Computer Vision Algorithms, Mason Hollis

Computer Science and Computer Engineering Undergraduate Honors Theses

This paper seeks to establish the validity and potential benefits of using existing computer vision techniques on audio samples rather than traditional images in order to consistently and accurately identify a song of origin from a short audio clip of potentially noisy sound. To do this, the audio sample is first converted to a spectrogram image, which is used to generate SURF features. These features are compared against a database of features, which have been previously generated in a similar fashion, in order to find the best match. This algorithm has been implemented in a system that can run as …


Inferring Intrinsic Beliefs Of Digital Images Using A Deep Autoencoder, Seok H. Lee May 2016

Inferring Intrinsic Beliefs Of Digital Images Using A Deep Autoencoder, Seok H. Lee

Computer Science and Computer Engineering Undergraduate Honors Theses

Training a system of artificial neural networks on digital images is a big challenge. Often times digital images contain a large amount of information and values for artificial neural networks to understand. In this work, the inference model is proposed in order to absolve this problem. The inference model is composed of a parameterized autoencoder that endures the loss of information caused by the rescaling of images and transition model that predicts the effect of an action on the observation. To test the inference model, the images of a moving robotic arm were given as the data set. The inference …