Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

A Comparative Analysis Of Reinforcement Learning Applied To Task-Space Reaching With A Robotic Manipulator With And Without Gravity Compensation, Jonathan Fugal Jan 2020

A Comparative Analysis Of Reinforcement Learning Applied To Task-Space Reaching With A Robotic Manipulator With And Without Gravity Compensation, Jonathan Fugal

Theses and Dissertations--Electrical and Computer Engineering

Advances in computing power in recent years have facilitated developments in autonomous robotic systems. These robotic systems can be used in prosthetic limbs, wearhouse packaging and sorting, assembly line production, as well as many other applications. Designing these autonomous systems typically requires robotic system and world models (for classical control based strategies) or time consuming and computationally expensive training (for learning based strategies). Often these requirements are difficult to fulfill. There are ways to combine classical control and learning based strategies that can mitigate both requirements. One of these ways is to use a gravity compensated torque control with reinforcement ...


Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic Jan 2020

Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic

Theses and Dissertations--Computer Science

Understanding free-flow speed is fundamental to transportation engineering in order to improve traffic flow, control, and planning. The free-flow speed of a road segment is the average speed of automobiles unaffected by traffic congestion or delay. Collecting speed data across a state is both expensive and time consuming. Some approaches have been presented to estimate speed using geometric road features for certain types of roads in limited environments. However, estimating speed at state scale for varying landscapes, environments, and road qualities has been relegated to manual engineering and expensive sensor networks. This thesis proposes an automated approach for estimating free-flow ...


Fault Identification On Electrical Transmission Lines Using Artificial Neural Networks, Christopher W. Asbery Jan 2020

Fault Identification On Electrical Transmission Lines Using Artificial Neural Networks, Christopher W. Asbery

Theses and Dissertations--Electrical and Computer Engineering

Transmission lines are designed to transport large amounts of electrical power from the point of generation to the point of consumption. Since transmission lines are built to span over long distances, they are frequently exposed to many different situations that can cause abnormal conditions known as electrical faults. Electrical faults, when isolated, can cripple the transmission system as power flows are directed around these faults therefore leading to other numerous potential issues such as thermal and voltage violations, customer interruptions, or cascading events. When faults occur, protection systems installed near the faulted transmission lines will isolate these faults from the ...


Image-Based Roadway Assessment Using Convolutional Neural Networks, Weilian Song Jan 2019

Image-Based Roadway Assessment Using Convolutional Neural Networks, Weilian Song

Theses and Dissertations--Computer Science

Road crashes are one of the main causes of death in the United States. To reduce the number of accidents, roadway assessment programs take a proactive approach, collecting data and identifying high-risk roads before crashes occur. However, the cost of data acquisition and manual annotation has restricted the effect of these programs. In this thesis, we propose methods to automate the task of roadway safety assessment using deep learning. Specifically, we trained convolutional neural networks on publicly available roadway images to predict safety-related metrics: the star rating score and free-flow speed. Inference speeds for our methods are mere milliseconds, enabling ...


Relation Prediction Over Biomedical Knowledge Bases For Drug Repositioning, Mehmet Bakal Jan 2019

Relation Prediction Over Biomedical Knowledge Bases For Drug Repositioning, Mehmet Bakal

Theses and Dissertations--Computer Science

Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying other essential relations (e.g., causation, prevention) between biomedical entities is also critical to understand biomedical processes. Hence, it is crucial to develop automated relation prediction systems that can yield plausible biomedical relations to expedite the discovery process. In this dissertation, we demonstrate three approaches to predict treatment relations between biomedical entities for the drug repositioning ...


Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz Jan 2018

Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz

Theses and Dissertations--Computer Science

Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree ...