Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 52

Full-Text Articles in Engineering

Conventional Platinum Metal Implants Provoke Restenosis Responses In Atherogenic But Not Healthy Arteries, Lea M. Morath, Roger J. Guillory Ii, Alexander A. Oliver, Shu Q. Liu, Martin L. Bocks, Galit Katarivas Levy, Jaroslaw Drelich, Jeremy Goldman Jun 2023

Conventional Platinum Metal Implants Provoke Restenosis Responses In Atherogenic But Not Healthy Arteries, Lea M. Morath, Roger J. Guillory Ii, Alexander A. Oliver, Shu Q. Liu, Martin L. Bocks, Galit Katarivas Levy, Jaroslaw Drelich, Jeremy Goldman

Michigan Tech Publications

Platinum-containing stents are commonly used in humans with hypercholesterolemia, whereas preclinical stent evaluation has commonly been performed in healthy animal models, providing inadequate information about stent performance under hypercholesterolemic conditions. In this investigation, we used an ApoE−/− mouse model to test the impact of hypercholesterolemia on neointima formation on platinum-containing implants. We implanted 125 μm diameter platinum wires into the abdominal aortas of ApoE−/− and ApoE+/+ mice for 6 months, followed by histological and immunofluorescence examination of neointimal size and composition. It was found that ApoE−/− mice developed neointimas with four times larger area and ten times greater thickness than …


Biodegradable Magnesium Materials Regulate Ros-Rns Balance In Pro-Inflammatory Macrophage Environment, Maria Paula Kwesiga, Amani A. Gillette, Seyedehfatemeh Razaviamri, Margaret E. Plank, Alexia L. Canull, Zachary Alesch, Weilue He, Bruce Lee, Roger J. Guillory Ii May 2023

Biodegradable Magnesium Materials Regulate Ros-Rns Balance In Pro-Inflammatory Macrophage Environment, Maria Paula Kwesiga, Amani A. Gillette, Seyedehfatemeh Razaviamri, Margaret E. Plank, Alexia L. Canull, Zachary Alesch, Weilue He, Bruce Lee, Roger J. Guillory Ii

Michigan Tech Publications

The relationship between reactive oxygen and nitrogen species (ROS-RNS) secretion and the concomitant biocorrosion of degradable magnesium (Mg) materials is poorly understood. We found that Mg foils implanted short term in vivo (24 h) displayed large amounts of proinflammatory F4/80+/iNOS + macrophages at the interface. We sought to investigate the interplay between biodegrading Mg materials (98.6% Mg, AZ31 & AZ61) and macrophages (RAW 264.7) stimulated with lipopolysaccharide (RAW 264.7LPS) to induce ROS-RNS secretion. To test how these proinflammatory ROS-RNS secreting cells interact with Mg corrosion in vitro, Mg and AZ61 discs were suspended approximately 2 mm above a monolayer of …


Mechanical Properties And Morphological Alterations In Fiber-Based Scaffolds Affecting Tissue Engineering Outcomes, James Dolgin, Samerender Nagam Hanumantharao, Stephen Farias, Carl G. Simon, Smitha Rao Apr 2023

Mechanical Properties And Morphological Alterations In Fiber-Based Scaffolds Affecting Tissue Engineering Outcomes, James Dolgin, Samerender Nagam Hanumantharao, Stephen Farias, Carl G. Simon, Smitha Rao

Michigan Tech Publications

Electrospinning is a versatile tool used to produce highly customizable nonwoven nanofiber mats of various fiber diameters, pore sizes, and alignment. It is possible to create electrospun mats from synthetic polymers, biobased polymers, and combinations thereof. The post-processing of the end products can occur in many ways, such as cross-linking, enzyme linking, and thermal curing, to achieve enhanced chemical and physical properties. Such multi-factor tunability is very promising in applications such as tissue engineering, 3D organs/organoids, and cell differentiation. While the established methods involve the use of soluble small molecules, growth factors, stereolithography, and micro-patterning, electrospinning involves an inexpensive, labor …


Utilizing Robust Design To Optimize Composite Bioadhesive For Promoting Dermal Wound Repair, Rattapol Pinnaratip, Zhongtian Zhang, Ariana Smies, Pegah Kord Forooshani, Xiaoqing Tang, Rupak Rajachar, Bruce Lee Apr 2023

Utilizing Robust Design To Optimize Composite Bioadhesive For Promoting Dermal Wound Repair, Rattapol Pinnaratip, Zhongtian Zhang, Ariana Smies, Pegah Kord Forooshani, Xiaoqing Tang, Rupak Rajachar, Bruce Lee

Michigan Tech Publications

Catechol-modified bioadhesives generate hydrogen peroxide (H2O2) during the process of curing. A robust design experiment was utilized to tune the H2O2 release profile and adhesive performance of a catechol-modified polyethylene glycol (PEG) containing silica particles (SiP). An L9 orthogonal array was used to determine the relative contributions of four factors (the PEG architecture, PEG concentration, phosphate-buffered saline (PBS) concentration, and SiP concentration) at three factor levels to the performance of the composite adhesive. The PEG architecture and SiP wt% contributed the most to the variation in the results associated with the H2O2 release profile, as both factors affected the crosslinking …


Anti-Inflammatory And Anti-Thrombogenic Properties Of Arterial Elastic Laminae, Jeremy Goldman, Shu Q. Liu, Brandon J. Tefft Mar 2023

Anti-Inflammatory And Anti-Thrombogenic Properties Of Arterial Elastic Laminae, Jeremy Goldman, Shu Q. Liu, Brandon J. Tefft

Michigan Tech Publications

Elastic laminae, an elastin-based, layered extracellular matrix structure in the media of arteries, can inhibit leukocyte adhesion and vascular smooth muscle cell proliferation and migration, exhibiting anti-inflammatory and anti-thrombogenic properties. These properties prevent inflammatory and thrombogenic activities in the arterial media, constituting a mechanism for the maintenance of the structural integrity of the arterial wall in vascular disorders. The biological basis for these properties is the elastin-induced activation of inhibitory signaling pathways, involving the inhibitory cell receptor signal regulatory protein α (SIRPα) and Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1). The activation of these molecules causes deactivation of …


Can We Explain Machine Learning-Based Prediction For Rupture Status Assessments Of Intracranial Aneurysms?, Nan Mu, M. Rezaeitaleshmahalleh, Z. Lyu, M. Wang, J. Tang, C. M. Strother, J. J. Gemmete, A. S. Pandey, J. Jiang Mar 2023

Can We Explain Machine Learning-Based Prediction For Rupture Status Assessments Of Intracranial Aneurysms?, Nan Mu, M. Rezaeitaleshmahalleh, Z. Lyu, M. Wang, J. Tang, C. M. Strother, J. J. Gemmete, A. S. Pandey, J. Jiang

Michigan Tech Publications

Although applying machine learning (ML) algorithms to rupture status assessment of intracranial aneurysms (IA) has yielded promising results, the opaqueness of some ML methods has limited their clinical translation. We presented the first explainability comparison of six commonly used ML algorithms: multivariate logistic regression (LR), support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), multi-layer perceptron neural network (MLPNN), and Bayesian additive regression trees (BART). A total of 112 IAs with known rupture status were selected for this study. The ML-based classification used two anatomical features, nine hemodynamic parameters, and thirteen morphologic variables. We utilized permutation feature importance, …


Fibroblast-Generated Extracellular Matrix Guides Anastomosis During Wound Healing In An Engineered Lymphatic Skin Flap, Alvis Chiu, Wenkai Jia, Yumeng Sun, Jeremy Goldman, Feng Zhao Feb 2023

Fibroblast-Generated Extracellular Matrix Guides Anastomosis During Wound Healing In An Engineered Lymphatic Skin Flap, Alvis Chiu, Wenkai Jia, Yumeng Sun, Jeremy Goldman, Feng Zhao

Michigan Tech Publications

A healthy lymphatic system is required to return excess interstitial fluid back to the venous circulation. However, up to 49% of breast cancer survivors eventually develop breast cancer-related lymphedema due to lymphatic injuries from lymph node dissections or biopsies performed to treat cancer. While early-stage lymphedema can be ameliorated by manual lymph drainage, no cure exists for late-stage lymphedema when lymph vessels become completely dysfunctional. A viable late-stage treatment is the autotransplantation of functional lymphatic vessels. Here we report on a novel engineered lymphatic flap that may eventually replace the skin flaps used in vascularized lymph vessel transfers. The engineered …


An Attention Residual U-Net With Differential Preprocessing And Geometric Postprocessing: Learning How To Segment Vasculature Including Intracranial Aneurysms, Nan Mu, Zonghan Lyu, Mostafa Rezaeitaleshmahalleh, Jinshan Tang, Jingfeng Jiang Feb 2023

An Attention Residual U-Net With Differential Preprocessing And Geometric Postprocessing: Learning How To Segment Vasculature Including Intracranial Aneurysms, Nan Mu, Zonghan Lyu, Mostafa Rezaeitaleshmahalleh, Jinshan Tang, Jingfeng Jiang

Michigan Tech Publications

Objective

Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images.

Methods

The …


An Assessment Of Blood Vessel Remodeling Of Nanofibrous Poly(Ε-Caprolactone) Vascular Grafts In A Rat Animal Model, Jana Horakova, Tereza Blassova, Zbynek Tonar, Connor Mccarthy, Katerina Strnadova, David Lukas, Petr Mikes, Patrick Bowen, Roger J. Guillory Ii, Megan C. Frost, Jeremy Goldman Feb 2023

An Assessment Of Blood Vessel Remodeling Of Nanofibrous Poly(Ε-Caprolactone) Vascular Grafts In A Rat Animal Model, Jana Horakova, Tereza Blassova, Zbynek Tonar, Connor Mccarthy, Katerina Strnadova, David Lukas, Petr Mikes, Patrick Bowen, Roger J. Guillory Ii, Megan C. Frost, Jeremy Goldman

Michigan Tech Publications

The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have …


Non-Antibiotic Antimicrobial Polydopamine Surface Coating To Prevent Stable Biofilm Formation On Satellite Telemetry Tags Used In Cetacean Conservation Applications, Ariana Smies, Jeremy Wales, Maureen Hennenfent, Laura Lyons, Caleigh R. Dunn, Jooke Robbins, Bruce Lee, Alexandre Zerbini, Rupak Rajachar Oct 2022

Non-Antibiotic Antimicrobial Polydopamine Surface Coating To Prevent Stable Biofilm Formation On Satellite Telemetry Tags Used In Cetacean Conservation Applications, Ariana Smies, Jeremy Wales, Maureen Hennenfent, Laura Lyons, Caleigh R. Dunn, Jooke Robbins, Bruce Lee, Alexandre Zerbini, Rupak Rajachar

Michigan Tech Publications

Satellite telemetry tags, used to monitor the migratory behavior of cetaceans, have the potential to be a vehicle for infection due to their invasive nature. Antibiotic coatings have been previously employed to reduce the chances of infection via the formation of a stable biofilm on the surface of the tags. However, increased use of antibiotics has the potential to lead to the development of antibiotic-resistant pathogens. To prevent the formation of antibiotic-resistant pathogens, a polydopamine surface coating that, when exposed to oxygen, releases low doses ( ~ 40-100 µ M ) of hydrogen peroxide over a prolonged period ( > 24 …


Electrochemical Behaviour And Direct Cell Viability Analysis Of Hybrid Implants Made Of Ti-6al-4v Lattices Infiltrated With A Bioabsorbable Zn-Based Alloy, Noa Gabay Bass, Galit Katarivas Levy, Tomer Ron, Razi Vago, Jeremy Goldman, Amnon Shirizly, Eli Aghion Oct 2022

Electrochemical Behaviour And Direct Cell Viability Analysis Of Hybrid Implants Made Of Ti-6al-4v Lattices Infiltrated With A Bioabsorbable Zn-Based Alloy, Noa Gabay Bass, Galit Katarivas Levy, Tomer Ron, Razi Vago, Jeremy Goldman, Amnon Shirizly, Eli Aghion

Michigan Tech Publications

Biodegradable metals are being developed for biomedical implants or components of implants. Biodegradable zinc-based materials, in particular, have been shown to promote bone regeneration in orthopaedic applications. Here, we investigated the potential of a hybrid Ti-Zn system, comprising a Ti-6Al-4V biostable lattice produced by additive manufacturing (AM) infiltrated by a bioabsorbable Zn-2%Fe alloy, to serve as an osseointegrated implant for dental and orthopaedic applications. The osseointegration of implants can be enhanced by a porous implant structure that facilitates bone ingrowth to achieve superior bonding between the bone tissue and the implant. The hybrid material was evaluated in terms of microstructure …


Thermomagnetic-Responsive Self-Folding Microgrippers For Improving Minimally Invasive Surgical Techniques And Biopsies, Caleigh R. Dunn, Bruce Lee, Rupak Rajachar Aug 2022

Thermomagnetic-Responsive Self-Folding Microgrippers For Improving Minimally Invasive Surgical Techniques And Biopsies, Caleigh R. Dunn, Bruce Lee, Rupak Rajachar

Michigan Tech Publications

Traditional open surgery complications are typically due to trauma caused by accessing the procedural site rather than the procedure itself. Minimally invasive surgery allows for fewer complications as microdevices operate through small incisions or natural orifices. However, current minimally invasive tools typically have restricted maneuverability, accessibility, and positional control of microdevices. Thermomagnetic-responsive microgrippers are microscopic multi-fingered devices that respond to temperature changes due to the presence of thermal-responsive polymers. Polymeric devices, made of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc) and polypropylene fumarate (PPF), self-fold due to swelling and contracting of the hydrogel layer. In comparison, soft metallic devices feature a pre-stressed metal bilayer …


Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal Jun 2022

Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal

Michigan Tech Publications

Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the development of next-generation antimicrobials. The rapid emergence of multi-drug resistant microbes, superbugs and mutated strains of viruses have fueled the search for new and alternate antimicrobial agents with broad-spectrum biocidal activity. Biomaterials, ranging from macroscopic polymers, proteins, and peptides to nanoscale materials such as nanoparticles, nanotubes and nanosheets have emerged as effective antimicrobials. An extensive body of research has established the antibacterial and antiviral efficiencies of different types of biomaterials. …


Comparison Of Performance Of Self-Expanding And Balloon-Expandable Transcatheter Aortic Valves, Hoda Hatoum, Milad Samaee, Janarthanan Sathananthan, Stephanie Sellers, Maximilian Kuetting, Scott M. Lilly, Abdul R. Ihdayhid, Philipp Blanke, Jonathon Leipsic, Vinod H. Thourani, Lakshmi Prasad Dasi Jun 2022

Comparison Of Performance Of Self-Expanding And Balloon-Expandable Transcatheter Aortic Valves, Hoda Hatoum, Milad Samaee, Janarthanan Sathananthan, Stephanie Sellers, Maximilian Kuetting, Scott M. Lilly, Abdul R. Ihdayhid, Philipp Blanke, Jonathon Leipsic, Vinod H. Thourani, Lakshmi Prasad Dasi

Michigan Tech Publications

Objective: To evaluate the flow dynamics of self-expanding and balloon-expandable transcatheter aortic valves pertaining to turbulence and pressure recovery. Transcatheter aortic valves are characterized by different designs that have different valve performance and outcomes. Methods: Assessment of transcatheter aortic valves was performed using self-expanding devices (26-mm Evolut [Medtronic], 23-mm Allegra [New Valve Technologies], and small Acurate neo [Boston Scientific]) and a balloon-expandable device (23-mm Sapien 3 [Edwards Lifesciences]). Particle image velocimetry assessed the flow downstream. A Millar catheter was used for pressure recovery calculation. Velocity, Reynolds shear stresses, viscous shear stress, and pressure gradients were calculated. Results: The maximal velocity …


Overcoming Supply Disruptions During Pandemics By Utilizing Found Hardware For Open Source Gentle Ventilation, S. Oberloier, N. Gallup, J. M. Pearce Apr 2022

Overcoming Supply Disruptions During Pandemics By Utilizing Found Hardware For Open Source Gentle Ventilation, S. Oberloier, N. Gallup, J. M. Pearce

Michigan Tech Publications

This article details the design of an open source emergency gentle ventilator (gentle-vent) framework that can be used in periods of scarcity. Although it is not a medical device, the system utilizes a wide range of commonly-available components that are combined using basic electronics skills to achieve the desired performance. The main function of the gentle-vent is to generate a calibrated pressure wave at the pump to provide support to the patient's breathing. Each gentle-vent permutation was tested using a DIY manometer as it would be utilized in the field in low-resource settings and validated with an open source VentMon. …


Gradient And Pressure Recovery Of A Self-Expandable Transcatheter Aortic Valve Depends On Ascending Aorta Size: In Vitro Study, Milad Samaee, Hoda Hatoum, Michael Biersmith, Breandan Yeats, Shelley C. Gooden, Vinod H. Thourani, Rebecca T. Hahn, Scott Lilly, Ajit Yoganathan, Lakshmi Prasad Dasi Mar 2022

Gradient And Pressure Recovery Of A Self-Expandable Transcatheter Aortic Valve Depends On Ascending Aorta Size: In Vitro Study, Milad Samaee, Hoda Hatoum, Michael Biersmith, Breandan Yeats, Shelley C. Gooden, Vinod H. Thourani, Rebecca T. Hahn, Scott Lilly, Ajit Yoganathan, Lakshmi Prasad Dasi

Michigan Tech Publications

Objective: In this study we aimed to understand the role of interaction of the Medtronic Evolut R transcatheter aortic valve with the ascending aorta (AA) by evaluating the performance of the valve and the pressure recovery in different AA diameters with the same aortic annulus size. Methods: A 26-mm Medtronic Evolut R valve was tested using a left heart simulator in aortic root models of different AA diameter (D): small (D = 23 mm), medium (D = 28 mm), and large (D = 34 mm) under physiological conditions. Measurements of pressure from upstream to downstream of the valve were performed …


Novel Stimuli-Responsive Pectin-Pvp-Functionalized Clay Based Smart Hydrogels For Drug Delivery And Controlled Release Application, Shabnam Rehmat, Nayab Batool Rizvi, Saba Urooge Khan, Abdul Ghaffar, Atif Islam, Rafi Ullah Khan, Azra Mehmood, Hira Butt, Muhammad Rizwan Feb 2022

Novel Stimuli-Responsive Pectin-Pvp-Functionalized Clay Based Smart Hydrogels For Drug Delivery And Controlled Release Application, Shabnam Rehmat, Nayab Batool Rizvi, Saba Urooge Khan, Abdul Ghaffar, Atif Islam, Rafi Ullah Khan, Azra Mehmood, Hira Butt, Muhammad Rizwan

Michigan Tech Publications

Stimuli-responsive drug delivery systems are urgently required for injectable site-specific delivery and release of drugs in a controlled manner. For this purpose, we developed novel pH-sensitive, biodegradable, and antimicrobial hydrogels from bio-macromolecule pectin, polyvinylpyrrolidone (PVP), 3-aminopropyl (diethoxy)methyl silane (3-APDEMS), and sepiolite clay via blending and solution casting technique. The purified sepiolite (40 um) was functionalized with 3-APDEMS crosslinker (ex-situ modification) followed by hydrogels fabrication. FTIR and SEM confirmed crosslinked structural integrity and rod-like morphology of hydrogels respectively. The swelling properties of hydrogels could be controlled by varying the concentration of modified clay in pectin/PVP blends. Moreover, the decrease in pH …


Graphene Oxide Functionalized Biosensor For Detection Of Stress-Related Biomarkers, Erican Santiago, Shailu Shree Poudyal, Sung Y. Shin, Hyeun Joong Yoon Jan 2022

Graphene Oxide Functionalized Biosensor For Detection Of Stress-Related Biomarkers, Erican Santiago, Shailu Shree Poudyal, Sung Y. Shin, Hyeun Joong Yoon

Michigan Tech Publications

A graphene oxide (GO)-based cortisol biosensor was developed to accurately detect corti-sol concentrations from sweat samples at point-of-care (POC) sites. A reference electrode, counter electrode, and working electrode make up the biosensor, and the working electrode was functional-ized using multiple layers consisting of GO and antibodies, including Protein A, IgG, and anti-Cab. Sweat samples contact the anti-Cab antibodies to transport electrons to the electrode, resulting in an electrochemical current response. The sensor was tested at each additional functionalization layer and at cortisol concentrations between 0.1 and 150 ng/mL to determine how the current response differed. A potentiostat galvanostat device was …


Stress Corrosion Analysis And Direct Cell Viability Of Biodegradable Zn-Fe-Ca Alloy In In-Vitro Conditions, Orit Avior, Noa Ben Ghedalia-Peled, Tomer Ron, Jeremy Goldman, Razi Vago, Eli Aghion Jan 2022

Stress Corrosion Analysis And Direct Cell Viability Of Biodegradable Zn-Fe-Ca Alloy In In-Vitro Conditions, Orit Avior, Noa Ben Ghedalia-Peled, Tomer Ron, Jeremy Goldman, Razi Vago, Eli Aghion

Michigan Tech Publications

Due to the excellent biocompatibility of Zn and Zn-based alloys, researchers have shown great interest in developing biodegradable implants based on zinc. Furthermore, zinc is an essential component of many enzymes and proteins. The human body requires ~15 mg of Zn per day, and there is minimal concern for systemic toxicity from a small zinc-based cardiovascular implant, such as an arterial stent. However, biodegradable Zn-based implants have been shown to provoke local fibrous encapsulation reactions that may isolate the implant from its surrounding environment and interfere with implant function. The development of biodegradable implants made from Zn-Fe-Ca alloy was designed …


Patient-Specific Cardiovascular Superelastic Niti Stents Produced By Laser Powder Bed Fusion, Valentina Finazzi, Francesca Berti, Roger J. Guillory Ii, Lorenza Petrini, Barbara Previtali, Ali Gökhan Demir Jan 2022

Patient-Specific Cardiovascular Superelastic Niti Stents Produced By Laser Powder Bed Fusion, Valentina Finazzi, Francesca Berti, Roger J. Guillory Ii, Lorenza Petrini, Barbara Previtali, Ali Gökhan Demir

Michigan Tech Publications

To date, there is a general lack of customizability within the selection of endovascular devices for catheter-based vascular interventions. Laser powder bed fusion (LPBF) has been flexibly exploited to produce customized implants using conventional biomedical alloys for orthopedic and dental applications. Applying LPBF for cardiovascular applications, patient-specific stents can be produced with small struts (approximately 100-300 µm), variable geometries, and clinically used metals capable of superelastic behaviour at body temperature (eg. equiatomic nickel-titanium alloys, NiTi). Additionally, the growing availability and use of patient-specific 3D models provides a unique opportunity to outline the necessary manufacturing process that would be required for …


Bioabsorbable Metal Zinc Differentially Affects Mitochondria In Vascular Endothelial And Smooth Muscle Cells, Olivia R. M. Bagshaw, Fereshteh Moradi, Christopher S. Moffatt, Hillary A. Hettwer, Ping Liang, Jeremy Goldman, Jaroslaw Drelich, Jeffrey A. Stuart Dec 2021

Bioabsorbable Metal Zinc Differentially Affects Mitochondria In Vascular Endothelial And Smooth Muscle Cells, Olivia R. M. Bagshaw, Fereshteh Moradi, Christopher S. Moffatt, Hillary A. Hettwer, Ping Liang, Jeremy Goldman, Jaroslaw Drelich, Jeffrey A. Stuart

Michigan Tech Publications

Zinc is an essential trace element having various structural, catalytic and regulatory interactions with an estimated 3000 proteins. Zinc has drawn recent attention for its use, both as pure metal and alloyed, in arterial stents due to its biodegradability, biocompatibility, and low corrosion rates. Previous studies have demonstrated that zinc metal implants prevent the development of neointimal hyperplasia, which is a common cause of restenosis following coronary intervention. This suppression appears to be smooth muscle cell-specific, as reendothelization of the neointima is not inhibited. To better understand the basis of zinc's differential effects on rat aortic smooth muscle (RASMC) versus …


3d Printing In Cardiology: A Review Of Applications And Roles For Advanced Cardiac Imaging, Ellen M. Lindquist, Jordan M. Gosnell, Sana K. Khan, John L. Byl, Weihua Zhou, Jingfeng Jiang, Et. Al. Dec 2021

3d Printing In Cardiology: A Review Of Applications And Roles For Advanced Cardiac Imaging, Ellen M. Lindquist, Jordan M. Gosnell, Sana K. Khan, John L. Byl, Weihua Zhou, Jingfeng Jiang, Et. Al.

Michigan Tech Publications

With the rate of cardiovascular diseases in the U.S increasing throughout the years, there is a need for developing more advanced treatment plans that can be tailored to specific patients and scenarios. The development of 3D printing is rapidly gaining acceptance into clinical cardiology.

In this review, key technologies used in 3D printing are briefly summarized, particularly, the use of artificial intelligence (AI), open-source tools like MeshLab and MeshMixer, and 3D printing techniques such as fused deposition molding (FDM) and polyjet are reviewed. The combination of 3D printing, multiple image integration, and augmented reality may greatly enhance data visualization …


Hepatic Cell Mobilization For Protection Against Ischemic Myocardial Injury, Shu Q. Liu, John B. Troy, Chi Hao Luan, Roger J. Guillory Ii Aug 2021

Hepatic Cell Mobilization For Protection Against Ischemic Myocardial Injury, Shu Q. Liu, John B. Troy, Chi Hao Luan, Roger J. Guillory Ii

Michigan Tech Publications

The heart is capable of activating protective mechanisms in response to ischemic injury to support myocardial survival and performance. These mechanisms have been recognized primarily in the ischemic heart, involving paracrine signaling processes. Here, we report a distant cardioprotective mechanism involving hepatic cell mobilization to the ischemic myocardium in response to experimental myocardial ischemia–reperfusion (MI-R) injury. A parabiotic mouse model was generated by surgical skin-union of two mice and used to induce bilateral MI-R injury with unilateral hepatectomy, establishing concurrent gain- and loss-of-hepatic cell mobilization conditions. Hepatic cells, identified based on the cell-specific expression of enhanced YFP, were found in …


Electroactive Polymeric Composites To Mimic The Electromechanical Properties Of Myocardium In Cardiac Tissue Repair, Kaylee Meyers, Bruce Lee, Rupak Rajachar May 2021

Electroactive Polymeric Composites To Mimic The Electromechanical Properties Of Myocardium In Cardiac Tissue Repair, Kaylee Meyers, Bruce Lee, Rupak Rajachar

Michigan Tech Publications

Due to the limited regenerative capabilities of cardiomyocytes, incidents of myocardial infarction can cause permanent damage to native myocardium through the formation of acellular, non-conductive scar tissue during wound repair. The generation of scar tissue in the myocardium compromises the biomechanical and electrical properties of the heart which can lead to further cardiac problems including heart failure. Currently, patients suffering from cardiac failure due to scarring undergo transplantation but limited donor availability and complications (i.e., rejection or infectious pathogens) exclude many individuals from successful transplant. Polymeric tissue engineering scaffolds provide an alternative approach to restore normal myocardium structure and function …


Oxidation Chemistry Of Catechol Utilized In Designing Stimuli-Responsive Adhesives And Antipathogenic Biomaterials, Rattapol Pinnataip, Bruce Lee Feb 2021

Oxidation Chemistry Of Catechol Utilized In Designing Stimuli-Responsive Adhesives And Antipathogenic Biomaterials, Rattapol Pinnataip, Bruce Lee

Michigan Tech Publications

Mussel foot proteins (Mfps) contain a large amount of the catecholic amino acid, DOPA, allowing the marine organism to anchor themselves onto various surfaces in a turbulent and wet environment. Modification of polymers with catechol imparts these materials with a strong, wet adhesive property. The oxidation chemistry and oxidation state of catechol are critical to the design of synthetic adhesives and biomaterials. In this Mini-Review, the effect of catechol oxidation state on adhesion, oxidation-mediated catechol cross-linking, and the generation of reactive oxygen species (ROS) during catechol oxidation are reviewed. Finally, the tuning of catechol oxidation state in designing stimuli-responsive adhesives …


Analysis Of Human Gait Using Hybrid Eeg-Fnirs-Based Bci System: A Review, Haroon Khan, Noman Naseer, Anis Yazidi, Per Kristian Eide, Hafiz Wajahat Hassan, Peyman Mirtaheri Jan 2021

Analysis Of Human Gait Using Hybrid Eeg-Fnirs-Based Bci System: A Review, Haroon Khan, Noman Naseer, Anis Yazidi, Per Kristian Eide, Hafiz Wajahat Hassan, Peyman Mirtaheri

Michigan Tech Publications

Human gait is a complex activity that requires high coordination between the central nervous system, the limb, and the musculoskeletal system. More research is needed to understand the latter coordination's complexity in designing better and more effective rehabilitation strategies for gait disorders. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are among the most used technologies for monitoring brain activities due to portability, non-invasiveness, and relatively low cost compared to others. Fusing EEG and fNIRS is a well-known and established methodology proven to enhance brain–computer interface (BCI) performance in terms of classification accuracy, number of control commands, and response time. Although …


Catechol-Based Antimicrobial Polymers, Seyedehfatemeh Razaviamri, Kan Wang, Bo Liu, Bruce P. Lee Jan 2021

Catechol-Based Antimicrobial Polymers, Seyedehfatemeh Razaviamri, Kan Wang, Bo Liu, Bruce P. Lee

Michigan Tech Publications

Catechol is a key constituent in mussel adhesive proteins and is responsible for strong adhesive property and crosslinking formation. Plant-based polyphenols are also capable of chemical interactions similar to those of catechol and are inherently antimicrobial. This review reports a series of catechol-based antimicrobial polymers classified according to their antimicrobial mechanisms. Catechol is utilized as a surface anchoring group for adhering monomers and polymers of known antimicrobial properties onto various types of surfaces. Additionally, catechol's ability to form strong complexes with metal ions and nanoparticles was utilized to sequester these antimicrobial agents into coatings and polymer matrices. During catechol oxidation, …


The Economics Of Classroom 3-D Printing Of Open-Source Digital Designs Of Learning Aids, Nicole Gallup, Joshua M. Pearce Nov 2020

The Economics Of Classroom 3-D Printing Of Open-Source Digital Designs Of Learning Aids, Nicole Gallup, Joshua M. Pearce

Michigan Tech Publications

While schools struggle financially, capital for purchasing physical learning aids is often cut. To determine if costs could be reduced for learning aids, this study analyzed classroom-based distributed digital manufacturing using 3-D printing of open-source learning aid designs. Learning aid designs are analyzed in detail for their economic viability considering printing and assembly costs with purchased components and compared to equivalent or inferior commercial products available on Amazon. The results show current open-source 3-D printers are capable of manufacturing useful learning aids and that doing so provides high economic savings in the classroom. Overall, the average learning aid would save …


Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID-19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing …


Partially Reprapable Automated Open Source Bag Valve Mask-Based Ventilator, Aliaksei Petsiuk, Nagendra G. Tanikella, Samantha Dertinger, Adam Pringle, Shane Oberloier, Joshua M. Pearce Oct 2020

Partially Reprapable Automated Open Source Bag Valve Mask-Based Ventilator, Aliaksei Petsiuk, Nagendra G. Tanikella, Samantha Dertinger, Adam Pringle, Shane Oberloier, Joshua M. Pearce

Michigan Tech Publications

This study describes the development of a simple and easy-to-build portable automated bag valve mask (BVM) compression system, which, during acute shortages and supply chain disruptions can serve as a temporary emergency ventilator. The resuscitation system is based on the Arduino controller with a real-time operating system installed on a largely RepRap 3-D printable parametric component-based structure. The cost of the materials for the system is under $170, which makes it affordable for replication by makers around the world. The device provides a controlled breathing mode with tidal volumes from 100 to 800 mL, breathing rates from 5 to 40 …