Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Department of Materials Science and Engineering Publications

GMAW

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce Nov 2015

Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

To provide process optimization of metal fabricating self-replicating rapid prototyper (RepRap) 3-D printers requires a low-cost sensor and data logger system to measure current (I) and voltage (V) of the gas metal arc welders (GMAW). This paper builds on previous open-source hardware development to provide a real-time measurement of welder I-V where the measuring circuit is connected to two analog inputs of the Arduino that is used to control the 3-D printer itself. Franklin firmware accessed through a web interface that is used to control the printer allows storing the measured values and downloading those stored readings to the user’s …


Low-Cost Open-Source Voltage And Current Monitor For Gas Metal Arc Weld 3d Printing, Anthony Pinar, Bas Wijnen, Gerald C. Anzalone, Timothy C. Havens, Paul G. Sanders, Joshua M. Pearce Jun 2015

Low-Cost Open-Source Voltage And Current Monitor For Gas Metal Arc Weld 3d Printing, Anthony Pinar, Bas Wijnen, Gerald C. Anzalone, Timothy C. Havens, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW) RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested …