Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Temperature

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 207

Full-Text Articles in Engineering

Concise Summary Of Existing Correlations With Thermophysical Properties Of Seawater With Applications: A Recent Review, Furqan Jamil, Hafiz Muhammad Ali, Mehdi Haji Khiadani Jun 2023

Concise Summary Of Existing Correlations With Thermophysical Properties Of Seawater With Applications: A Recent Review, Furqan Jamil, Hafiz Muhammad Ali, Mehdi Haji Khiadani

Research outputs 2022 to 2026

Physical and thermal specifications of seawater are used by researchers and engineers in different fields. Accordingly, a vast array of literature has been devoted to developing different correlation equations for calculating seawater characteristics. This review presents a concise investigation of various physical and thermal specifications of seawater including: density, boiling point and vapor pressure, osmotic coefficient and pressure, surface tension, thermal conductivity, viscosity, specific enthalpy, specific entropy, specific heat capacity, isothermal compressibility, isobaric expansivity and Gibbs energy. Further to this, apsects of temperature, salinity and pressure have a significant influence on these properties, and will also be considered here. The …


Non-Destructive Infrared Thermographic Curing Analysis Of Polymer Composites, Md Ashiqur Rahman, Javier Becerril, Dipannita Ghosh, Nazmul Islam, Ali Ashraf Feb 2023

Non-Destructive Infrared Thermographic Curing Analysis Of Polymer Composites, Md Ashiqur Rahman, Javier Becerril, Dipannita Ghosh, Nazmul Islam, Ali Ashraf

Mechanical Engineering Faculty Publications and Presentations

Infrared (IR) thermography is a non-contact method of measuring temperature that analyzes the infrared radiation emitted by an object. Properties of polymer composites are heavily influenced by the filler material, filler size, and filler dispersion, and thus thermographic analysis can be a useful tool to determine the curing and filler dispersion. In this study, we investigated the curing mechanisms of polymer composites at the microscale by capturing real-time temperature using an IR Thermal Camera. Silicone polymers with fillers of Graphene, Graphite powder, Graphite flake, and Molybdenum disulfide (MoS2) were subsequently poured into a customized 3D printed mold for …


Adoption Of Astm A956-06 Leeb Hardness Testing Standard To Rock Engineering Applications, Sasan Ghorbani, Seyed Hadi Hoseinie, Ebrahim Ghasemi, Taghi Sherizadeh Jan 2023

Adoption Of Astm A956-06 Leeb Hardness Testing Standard To Rock Engineering Applications, Sasan Ghorbani, Seyed Hadi Hoseinie, Ebrahim Ghasemi, Taghi Sherizadeh

Mining Engineering Faculty Research & Creative Works

The Leeb dynamic hardness test was originally developed for metallic materials and is now widely used in rock engineering and engineering geology. This study aims to fundamentally investigate the application conditions of the Leeb hardness test in rock engineering because it is a high-precision, fast, nondestructive, and portable method. Therefore, four main limitations of the Leeb method mentioned in ASTM A956-06 have been further analyzed. The important challenges, including scale effect, temperature effect, surface roughness effect, and the effect of physical properties on the Leeb method, have been studied. For this purpose, 33 rock samples with a wide range of …


Numerical Simulation Of The Donor-Assisted Stir Material For Friction Stir Welding Of Aluminum Alloys And Carbon Steel, Joseph Maniscalco, Abdelmageed A. Elmustafa, Srinivasa Bhukya, Zhenhua Wu Jan 2023

Numerical Simulation Of The Donor-Assisted Stir Material For Friction Stir Welding Of Aluminum Alloys And Carbon Steel, Joseph Maniscalco, Abdelmageed A. Elmustafa, Srinivasa Bhukya, Zhenhua Wu

Mechanical & Aerospace Engineering Faculty Publications

In this research effort, we explore the use of a donor material to help heat workpieces without wearing the tool or adding more heat than necessary to the system. The donor material would typically be a small piece (or pieces) of material, presumably of lower strength than the workpiece but with a comparable melting point. The donor, a sandwich material, is positioned between the tool head and the material to be welded, where the tool initially plunges and heats up in the same manner as the parent material that is intended for welding. The donor material heats up subsequent to …


Applications Of Stretching Technique And Time Window Effects On Ultrasonic Velocity Monitoring In Concrete, Bibo Zhong, Jinying Zhu Jul 2022

Applications Of Stretching Technique And Time Window Effects On Ultrasonic Velocity Monitoring In Concrete, Bibo Zhong, Jinying Zhu

Department of Civil and Environmental Engineering: Faculty Publications

Coda wave interferometry (CWI) has been used to measure the relative wave-velocity change (dV/V) caused by small changes in materials. This study uses the stretching processing technique which has been used for CWI analysis to investigate velocity changes of direct longitudinal (P) wave, direct shear (S) wave, and coda wave in concrete by choosing different time windows of ultrasonic signals. It is found that the obtained wave-velocity change depends on the time window position, because the relative contribution of P wave and S wave is different in each signal window. This paper presents three experimental scenarios of velocity …


Classifying Mixing Regimes In Ponds And Shallow Lakes, Meredith A. Holgerson, David C. Richardson, Joseph Roith, Lauren E. Bortolotti, Kerri Finlay, Daniel J. Hornbach, Kshitij Gurung, Andrew Ness, Mikkel R. Andersen, Sheel Bansal, Jacques C. Finlay, Jacob A. Cianci-Gaskill, Shannon Hahn, Benjamin D. Janke, Cory Mcdonald, Jorrit P. Mesman, Rebecca L. North, Cassandra O. Roberts, Jon N. Sweetman, Jackie R. Webb Jul 2022

Classifying Mixing Regimes In Ponds And Shallow Lakes, Meredith A. Holgerson, David C. Richardson, Joseph Roith, Lauren E. Bortolotti, Kerri Finlay, Daniel J. Hornbach, Kshitij Gurung, Andrew Ness, Mikkel R. Andersen, Sheel Bansal, Jacques C. Finlay, Jacob A. Cianci-Gaskill, Shannon Hahn, Benjamin D. Janke, Cory Mcdonald, Jorrit P. Mesman, Rebecca L. North, Cassandra O. Roberts, Jon N. Sweetman, Jackie R. Webb

Michigan Tech Publications

Lakes are classified by thermal mixing regimes, with shallow waterbodies historically categorized as continuously mixing systems. Yet, recent studies demonstrate extended summertime stratification in ponds, underscoring the need to reassess thermal classifications for shallow waterbodies. In this study, we examined the summertime thermal dynamics of 34 ponds and shallow lakes across temperate North America and Europe to categorize and identify the drivers of different mixing regimes. We identified three mixing regimes: rarely (n = 18), intermittently (n = 10), and often (n = 6) mixed, where waterbodies mixed an average of 2%, 26%, and 75% of the study period, respectively. …


Machine Learning Prediction Of Glass Transition Temperature Of Conjugated Polymers From Chemical Structure, Amirhadi Alesadi, Zhiqiang Cao, Zhaofan Li, Song Zhang, Haoyu Zhao, Xiaodan Gu, Wenjie Xia Jun 2022

Machine Learning Prediction Of Glass Transition Temperature Of Conjugated Polymers From Chemical Structure, Amirhadi Alesadi, Zhiqiang Cao, Zhaofan Li, Song Zhang, Haoyu Zhao, Xiaodan Gu, Wenjie Xia

Faculty Publications

Predicting the glass transition temperature (Tg) is of critical importance as it governs the thermomechanical performance of conjugated polymers (CPs). Here, we report a predictive modeling framework to predict Tg of CPs through the integration of machine learning (ML), molecular dynamics (MD) simulations, and experiments. With 154 Tg data collected, an ML model is developed by taking simplified “geometry” of six chemical building blocks as molecular features, where side-chain fraction, isolated rings, fused rings, and bridged rings features are identified as the dominant ones for Tg. MD simulations further unravel the fundamental roles …


Experimental Validation Of A Reflective Long Period Grating Design Methodology, Sohel Rana, Nirmala Kandadai, Harish Subbaraman May 2022

Experimental Validation Of A Reflective Long Period Grating Design Methodology, Sohel Rana, Nirmala Kandadai, Harish Subbaraman

Electrical and Computer Engineering Faculty Publications and Presentations

In this work, we present an experimental demonstration of our previously published modeling work on reflective long period grating (LPG). To provide the practical realization of the modeling work, we coat a long segment of fiber both in the tail length and the end facet beyond the gratings with silver to invert the transmission mode LPG to reflection mode LPG. We then measure the LPG characteristics in both the transmission and reflection mode and validate our findings from modeling work. We further build temperature and refractive index (RI) sensors and demonstrate temperature sensing from 21 °C to 191 °C with …


Copulas For Hydroclimatic Analysis: A Practice-Oriented Overview, Faranak Tootoonchi, Mojtaba Sadegh, Jan Olaf Haerter, Olle Räty, Thomas Grabs, Claudia Teutschbein Mar 2022

Copulas For Hydroclimatic Analysis: A Practice-Oriented Overview, Faranak Tootoonchi, Mojtaba Sadegh, Jan Olaf Haerter, Olle Räty, Thomas Grabs, Claudia Teutschbein

Civil Engineering Faculty Publications and Presentations

A warming climate is associated with increasing hydroclimatic extremes, which are often interconnected through complex processes, prompting their concurrence and/or succession, and causing compound extreme events. It is critical to analyze the risks of compound events, given their disproportionately high adverse impacts. To account for the variability in two or more hydroclimatic variables (e.g., temperature and precipitation) and their dependence, a rising number of publications focuses on multivariate analysis, among which the notion of copula-based probability distribution has attracted tremendous interest. Copula is a mathematical function that expresses the joint cumulative probability distribution of multiple variables. Our focus is to …


Precipitation And Temperature Extremes And Association With Large-Scale Climate Indices: An Observational Evidence Over India, S Rehana, Pranathi Yeleswarapu, Ghouse Basha, Francisco Munoz-Arriola Feb 2022

Precipitation And Temperature Extremes And Association With Large-Scale Climate Indices: An Observational Evidence Over India, S Rehana, Pranathi Yeleswarapu, Ghouse Basha, Francisco Munoz-Arriola

Biological Systems Engineering: Papers and Publications

Climate change exposes more frequent natural hazards and physical vulnerabilities to the built and natural environments. Extreme precipitation and temperature events will have a significant impact on both the natural environment and human society. However, it is unclear whether precipitation and temperature extremes increase physical vulnerabilities across scales and their links with large-scale climate indices. This study investigates the relationship between precipitation and temperature extremes, as recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI), and large scale climatological phenomenon indices (Indian Summer Monsoon Index (ISMI), Arctic Oscillation (AO), and North Atlantic Oscillation (NAO)), using India as …


Applications Of Stretching Technique And Time Window Effects On Ultrasonic Velocity Monitoring In Concrete, Bibo Zhong, Jinying Zhu Jan 2022

Applications Of Stretching Technique And Time Window Effects On Ultrasonic Velocity Monitoring In Concrete, Bibo Zhong, Jinying Zhu

Department of Civil and Environmental Engineering: Faculty Publications

Coda wave interferometry (CWI) has been used to measure the relative wave-velocity change (dV/V) caused by small changes in materials. This study uses the stretching processing technique which has been used for CWI analysis to investigate velocity changes of direct longitudinal (P) wave, direct shear (S) wave, and coda wave in concrete by choosing different time windows of ultrasonic signals. It is found that the obtained wave-velocity change depends on the time window position, because the relative contribution of P wave and S wave is different in each signal window. This paper presents three experimental scenarios of velocity …


Integrating Temperature Dependence Into A Microstructure-Sensitive Fatigue Model For Titanium Alloys, Jared Michael Darius Jan 2022

Integrating Temperature Dependence Into A Microstructure-Sensitive Fatigue Model For Titanium Alloys, Jared Michael Darius

Masters Theses

This work seeks to integrate temperature dependence into a microstructure-sensitive fatigue model for titanium alloys produced by both extrusion and electron beam melting (EBM) additive manufacturing, revising and enhancing the MultiStage Fatigue (MSF) model as the foundational model framework. Traditional fatigue modeling has required design engineers to conservatively use a lower-bound estimate of fatigue life predictions given a statistically significant spread of experimental data that can span up to two or sometimes three orders of magnitude for a given test condition. This variation in fatigue data has since been accounted for with the advent of the MSF model, linking individual …


Role Of Primary Freeboard On Staged Combustion Of Hardwood Pellets In A Fixed Bed Combustor, Awais Junejo, Yasir Al-Abdeli, Jacobo Porteiro Jan 2022

Role Of Primary Freeboard On Staged Combustion Of Hardwood Pellets In A Fixed Bed Combustor, Awais Junejo, Yasir Al-Abdeli, Jacobo Porteiro

Research outputs 2022 to 2026

In staged fixed bed biomass combustion, primary air is supplied beneath the fuel bed with secondary air then provided above in the freeboard region. For fixed bed configurations, the freeboard is further divided into a primary freeboard length (LI), which is upstream of the secondary air and a secondary freeboard length (LII), measured from the secondary air all the way to the exhaust port. Despite extensive research into fixed bed configurations, no work has been successfully completed that resolves the effects of changing LI on fuel conversion, both in the fuel bed and within the freeboard of batch-type biomass combustors. …


Effect Of Temperature On Early‐Age Properties Of Self‐Consolidating Concrete Equivalent Mortar, Nima Farzadnia, Jing Pan, Kamal Khayat, Eric Wirquin Dec 2020

Effect Of Temperature On Early‐Age Properties Of Self‐Consolidating Concrete Equivalent Mortar, Nima Farzadnia, Jing Pan, Kamal Khayat, Eric Wirquin

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

In this study, the effect of ambient temperature during casting on fresh properties, hydration kinetics, and early‐age compressive strength of self-consolidating concrete (SCC) was evaluated. Concrete equivalent mortars (CEMs) with water‐to‐binder ratios of 0.41 and 0.45 were cast based on SCC mixture designs for building and infrastructure construction and precast applications. The CEMs were prepared at temperatures ranging from 8 to 36°C. Superplasticizer (SP) and air‐entraining agent (AEA) demand were evaluated for the CEM mixtures made with different supplementary cementing material (SCM) and limestone filler types. Test results showed that the ambient temperature can significantly affect the SP and AEA …


Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova Nov 2020

Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova

Articles

In this paper a Vernier effect based sensor is analyzed and demonstrated experimentally in a tri-microfiber coupler (Tri-MFC) and polarization-maintaining fiber (PMF) loop interferometer (Tri-MFC-PMF) to provide ultrasensitive refractive index and temperature sensing. The main novelty of this work is an analysis of parameters of the proposed Tri-MFC-PMF with the objective of determining the conditions leading to a strong Vernier effect. It has been identified by simulation that the Vernier effect is a primary factor in the design of Tri-MFC-PMF loop sensing structure for sensitivity enhancement. It is furthermore demonstrated experimentally that enhancing the visibility of the Vernier spectrum in …


The Effect Of High Efficiency Building Technologies And Pv Generation On The Energy Profiles For Typical Us Residences, Evan S. Jones, Rosemary E. Alden, Huangjie Gong, Andrew G. Frye, Donald G. Colliver, Dan M. Ionel Sep 2020

The Effect Of High Efficiency Building Technologies And Pv Generation On The Energy Profiles For Typical Us Residences, Evan S. Jones, Rosemary E. Alden, Huangjie Gong, Andrew G. Frye, Donald G. Colliver, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

The penetrations of high efficiency technologies and photovoltaic (PV) generation are increasing in the residential sector. Technologies such as improved insulation and efficient HVAC systems significantly affect the energy profile of a house. This effect varies due to climate characteristics, i.e. temperature, solar radiation, relative humidity, and wind speeds. The effect of other technologies, such as efficient water heaters, lighting, or kitchen appliances, is mainly governed by human behavior, which may be represented by a schedule. This paper studies the performance of both climate-influenced and scheduled household devices among different levels of efficiency through combined computational and experimental methods. Three …


University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith Aug 2020

University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith

Mechanical Engineering Faculty Publications

In July 2018, unmanned aerial systems (UASs) were deployed to measure the properties of the lower atmosphere within the San Luis Valley, an elevated valley in Colorado, USA, as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). Measurement objectives included detailing boundary layer transition, canyon cold-air drainage and convection initiation within the valley. Details of the contribution to LAPSE-RATE made by the University of Kentucky are provided here, which include measurements by seven different fixed-wing and rotorcraft UASs totaling over 178 flights with validated data. The data from these coordinated UAS flights …


Estimating The Inner Ring Defect Size And Residual Service Life Of Freight Railcar Bearings Using Vibration Signatures, Jennifer Lima, Constantine Tarawneh, Jesse Aguilera, Jonas Cuanang Jul 2020

Estimating The Inner Ring Defect Size And Residual Service Life Of Freight Railcar Bearings Using Vibration Signatures, Jennifer Lima, Constantine Tarawneh, Jesse Aguilera, Jonas Cuanang

Mechanical Engineering Faculty Publications and Presentations

There are currently two primary wayside detection systems for monitoring the health of freight railcar bearings in the railroad industry: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the train operator of high-risk defects. However, many defective bearings may never be detected by TADS™ since a high-risk defect is a spall which spans about 90% of a bearing’s raceway, and there are less than 30 systems in operation throughout the United States and Canada. HBDs sit on the side of the rail-tracks and use non-contact infrared sensors to …


Optimizing Power Consumption Of Freight Railroad Bearings Using Laboratory Experimental Data, Carlos E. Lopez Iii, Constantine Tarawneh, Arturo A. Fuentes, Harry Siegal Jul 2020

Optimizing Power Consumption Of Freight Railroad Bearings Using Laboratory Experimental Data, Carlos E. Lopez Iii, Constantine Tarawneh, Arturo A. Fuentes, Harry Siegal

Mechanical Engineering Faculty Publications and Presentations

Based on projected freight truck fuel efficiency, freight railroad and equipment suppliers need to identify, evaluate and implement technologies and/or operating practices to maintain traditional railroad economic competitiveness. The railway industry uses systems that record the total energy efficiency of a train but not energy efficiency or consumption by components. Lowering the energy consumption of certain train components will result in an increase in its overall energy efficiency, which will yield cost benefits for all the stakeholders. One component of interest is the railroad bearing whose power consumption varies depending on several factors that include railcar load, train speed, condition …


Optimization Of Railroad Bearing Health Monitoring System For Wireless Utilization, Jonas Cuanang, Constantine Tarawneh, Martin Amaro Jr., Jennifer Lima, Heinrich D. Foltz Jul 2020

Optimization Of Railroad Bearing Health Monitoring System For Wireless Utilization, Jonas Cuanang, Constantine Tarawneh, Martin Amaro Jr., Jennifer Lima, Heinrich D. Foltz

Mechanical Engineering Faculty Publications and Presentations

In the railroad industry, systematic health inspections of freight railcar bearings are required. Bearings are subjected to high loads and run at high speeds, so over time the bearings may develop a defect that can potentially cause a derailment if left in service operation. Current bearing condition monitoring systems include Hot-Box Detectors (HBDs) and Trackside Acoustic Detection Systems (TADS™). The commonly used HBDs use non-contact infrared sensors to detect abnormal temperatures of bearings as they pass over the detector. Bearing temperatures that are about 94°C above ambient conditions will trigger an alarm indicating that the bearing must be removed from …


Negative Curvature Hollow Core Fiber Based All-Fiber Interferometer And Its Sensing Applications To Temperature And Strain, Dejun Liu, Wei Li, Qiang Wu, Haoyu Zhao, Fengzi Ling, Ke Tian, Changyu Shen, Fangfang Wei, Wei Han, Gerald Farrell, Yuliya Semenova, Pengfei Wang Jan 2020

Negative Curvature Hollow Core Fiber Based All-Fiber Interferometer And Its Sensing Applications To Temperature And Strain, Dejun Liu, Wei Li, Qiang Wu, Haoyu Zhao, Fengzi Ling, Ke Tian, Changyu Shen, Fangfang Wei, Wei Han, Gerald Farrell, Yuliya Semenova, Pengfei Wang

Articles

Negative curvature hollow core fiber (NCHCF) is a promising candidate for sensing applications; however, research on NCHCF based fiber sensors starts only in the recent two years. In this work, an all-fiber interferometer based on an NCHCF structure is proposed for the first time. The interferometer was fabricated by simple fusion splicing of a short section of an NCHCF between two singlemode fibers (SMFs). Both simulation and experimental results show that multiple modes and modal interferences are excited within the NCHCF structure. Periodic transmission dips with high spectral extinction ratio (up to 30 dB) and wide free spectral range (FSR) …


Effects Of Nano-Clay Content, Foaming Temperature And Foaming Time On Density And Cell Size Of Pvc Matrix Foam By Presented Least Absolute Shrinkage And Selection Operator Statistical Regression Via Suitable Experiments As A Function Of Mmt Content, Zhixiong Li, Hamzeh Shahrajabian, Seyed Amin Bagherzadeh, Hamid Jadidi, Arash Karimipour, Iskander Tlili Jan 2020

Effects Of Nano-Clay Content, Foaming Temperature And Foaming Time On Density And Cell Size Of Pvc Matrix Foam By Presented Least Absolute Shrinkage And Selection Operator Statistical Regression Via Suitable Experiments As A Function Of Mmt Content, Zhixiong Li, Hamzeh Shahrajabian, Seyed Amin Bagherzadeh, Hamid Jadidi, Arash Karimipour, Iskander Tlili

Faculty of Engineering and Information Sciences - Papers: Part B

Present article aims to investigate the effect of nano-clay content, foaming temperature and foaming time on the density and cell size of the PVC matrix foam. The cell size would affect the insulating and mechanical properties. The foaming temperature is set in three levels of 70, 80 and 90 °C, foaming time is set in three levels of 10, 20, and 30 s; and nano-clay is in content of 1, 3, and 5 wt%. Outputs consist the density and cell size, which affect impact the thermal conductivity, mechanical properties and the weight of the polymer foam. In addition the Least …


Field Assessment Of Interreplicate Variability From Eight Electromagnetic Soil Moisture Sensors, Tsz Him Lo, Daran Rudnick, Jasreman Singh, Hope Njuki Nakabuye, Abia Katimbo, Derek M. Heeren, Yufeng Ge Jan 2020

Field Assessment Of Interreplicate Variability From Eight Electromagnetic Soil Moisture Sensors, Tsz Him Lo, Daran Rudnick, Jasreman Singh, Hope Njuki Nakabuye, Abia Katimbo, Derek M. Heeren, Yufeng Ge

Biological Systems Engineering: Papers and Publications

Interreplicate variability—the spread in output values among units of the same sensor subjected to essentially the same condition—can be a major source of uncertainty in sensor data. To investigate the interreplicate variability among eight electromagnetic soil moisture sensors through a field study, eight units of TDR315, CS616, CS655, HydraProbe2, EC5, 5TE, and Teros12 were installed at a depth of 0.30 m within 3 m of each other, whereas three units of AquaSpy Vector Probe were installed within 3 m of each other. The magnitude of interreplicate variability in volumetric water content (θv) was generally similar between a static …


Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos Jul 2019

Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos

Mechanical Engineering Faculty Publications and Presentations

The railroad industry currently utilizes two wayside detection systems to monitor the health of freight railcar bearings in service: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the conductor of high-risk defects. Many defective bearings may never be detected by TADS™ since a high-risk defect is a spall which spans more than 90% of a bearing’s raceway, and there are less than 20 systems in operation throughout the United States and Canada. Much like the TADS™, the HBD is a device that sits on the side of the …


Using A Balloon-Launched Unmanned Glider To Validate Real-Time Wrf Modeling, Travis J. Schuyler, S. M. Iman Gohari, Gary Pundsack, Donald Berchoff, Marcelo I. Guzman Apr 2019

Using A Balloon-Launched Unmanned Glider To Validate Real-Time Wrf Modeling, Travis J. Schuyler, S. M. Iman Gohari, Gary Pundsack, Donald Berchoff, Marcelo I. Guzman

Chemistry Faculty Publications

The use of small unmanned aerial systems (sUAS) for meteorological measurements has expanded significantly in recent years. SUAS are efficient platforms for collecting data with high resolution in both space and time, providing opportunities for enhanced atmospheric sampling. Furthermore, advances in mesoscale weather research and forecasting (WRF) modeling and graphical processing unit (GPU) computing have enabled high resolution weather modeling. In this manuscript, a balloon-launched unmanned glider, complete with a suite of sensors to measure atmospheric temperature, pressure, and relative humidity, is deployed for validation of real-time weather models. This work demonstrates the usefulness of sUAS for validating and improving …


The Effect Of Cryogenic Thermal Cycling On Aging, Rejuvenation, And Mechanical Properties Of Metallic Glasses, Nikolai V. Priezjev Jan 2019

The Effect Of Cryogenic Thermal Cycling On Aging, Rejuvenation, And Mechanical Properties Of Metallic Glasses, Nikolai V. Priezjev

Mechanical and Materials Engineering Faculty Publications

The structural relaxation, potential energy states, and mechanical properties of a model glass subjected to thermal cycling are investigated using molecular dynamics simulations. We study a non-additive binary mixture which is annealed with different cooling rates from the liquid phase to a low temperature well below the glass transition. The thermal treatment is applied by repeatedly heating and cooling the system at constant pressure, thus temporarily inducing internal stresses upon thermal expansion. We find that poorly annealed glasses are relocated to progressively lower levels of potential energy over consecutive cycles, whereas well annealed glasses can be rejuvenated at sufficiently large …


Above-Roof Temperature Impacts On Heating Penalties Of Large Cool Roofs In Australian Climates – Final Report, Wenye Lin, Alan Green, Georgios Kokogiannakis, Paul Cooper Jan 2019

Above-Roof Temperature Impacts On Heating Penalties Of Large Cool Roofs In Australian Climates – Final Report, Wenye Lin, Alan Green, Georgios Kokogiannakis, Paul Cooper

Faculty of Engineering and Information Sciences - Papers: Part B

This report outlines the key outcomes of research project RP1037u1 ‘Above-Roof Temperature Impacts on Heating Penalties of Large Cool Roofs in Australian Climates’, an extension to project RP1037 ‘Driving increased utilisation of cool roofs on large-footprint buildings’. The research has been focused on two key aspects of roof thermal performance that had, up until the time of writing, not been taken into account in most investigations into cool roof technology: 1. The condensation and evaporation of dew on the roof surface, and the effect this has on roof temperature by way of: a. The latent heat that is absorbed and …


Agenator: An Open Source Computer-Controlled Dry Aging System For Beef, Soon Kiat Lau, Felipe Azevedo Ribeiro, Jeyamkondan Subbiah, Chris R. Calkins Jan 2019

Agenator: An Open Source Computer-Controlled Dry Aging System For Beef, Soon Kiat Lau, Felipe Azevedo Ribeiro, Jeyamkondan Subbiah, Chris R. Calkins

Biological Systems Engineering: Papers and Publications

Dry aging of beef is a process where beef is exposed to a controlled environment with the ultimate goal of drying the beef to improve its quality and value. Comprehensive investigations into the effects of various environmental conditions on dry aging are crucial for understanding and optimizing the process, but the lack of affordable equipment focused on data collection makes it difficult to do so. The Agenator was thus developed as an open source system with a suite of features for investigating dry aging such as: measuring and recording relative humidity, temperature, mass, air velocity, and fan rotational speed; precise …


Slow Relaxation Dynamics In Binary Glasses During Stress-Controlled, Tension-Compression Cyclic Loading, Nikolai V. Priezjev Oct 2018

Slow Relaxation Dynamics In Binary Glasses During Stress-Controlled, Tension-Compression Cyclic Loading, Nikolai V. Priezjev

Mechanical and Materials Engineering Faculty Publications

The effect of cyclic loading on relaxation dynamics and mechanical properties of metallic glasses is studied using molecular dynamics simulations. We consider the Kob-Andersen three-dimensional binary mixture rapidly cooled across the glass transition and subjected to thousands of tension-compression cycles in the elastic range. It was found that during cyclic loading at constant pressure, the system is relocated to progressively lower levels of the potential energy, thus promoting greater densification and higher strength. Furthermore, with increasing stress amplitude, the average glass density increases and the minimum of the potential energy becomes deeper, while the elastic modulus is reduced. The typical …


Evaluation Of Tseb Turbulent Fluxes Using Different Methods For The Retrieval Of Soil And Canopy Component Temperatures From Uav Thermal And Multispectral Imagery, Héctor Nieto, William P. Kustas, Alfonso F. Torres-Rúa, Joseph G. Alfieri, Feng Gao, Martha C. Anderson, W. Alex White, Lisheng Song, María Del Mar Alsina, John H. Prueger, Mac Mckee, Manal Elarab, Lynn G. Mckee Sep 2018

Evaluation Of Tseb Turbulent Fluxes Using Different Methods For The Retrieval Of Soil And Canopy Component Temperatures From Uav Thermal And Multispectral Imagery, Héctor Nieto, William P. Kustas, Alfonso F. Torres-Rúa, Joseph G. Alfieri, Feng Gao, Martha C. Anderson, W. Alex White, Lisheng Song, María Del Mar Alsina, John H. Prueger, Mac Mckee, Manal Elarab, Lynn G. Mckee

AggieAir Publications

The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards. To better understand these effects, very high spatial resolution remote-sensing data from …