Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Maximum compressive strengths

Missouri University of Science and Technology

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2010

Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Bioactive glasses are more promising than biopolymers in fabricating scaffolds for bone tissue repair because they convert to hydroxyapatite, when implanted in vivo. Both direct and indirect selective laser sintering (SLS) methods of 13-93 bioactive glass were considered in this research to study the feasibility of fabricating scaffolds for bone repair applications. Stearic acid was used as the binder in the indirect method to fabricate the scaffolds. The green scaffolds underwent binder burnout and sintering at various soaking conditions between 675⁰C and 700⁰C, achieving a maximum compressive strength of 23.6 MPa, which is higher than that of the human cancellous …