Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

2010

Kinesiology

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Pre-Swing Deficits In Forward Propulsion, Swing Initiation And Power Generation By Individual Muscles In Hemiparetic Walking, Carrie L. Peterson, Allison Kinney, Steven A. Kautz, Richard R. Neptune Aug 2010

Pre-Swing Deficits In Forward Propulsion, Swing Initiation And Power Generation By Individual Muscles In Hemiparetic Walking, Carrie L. Peterson, Allison Kinney, Steven A. Kautz, Richard R. Neptune

Mechanical and Aerospace Engineering Faculty Publications

Clinical studies of hemiparetic walking have shown pre-swing abnormalities in the paretic leg suggesting that paretic muscle contributions to important biomechanical walking subtasks are different than those of non-disabled individuals. Three-dimensional forward dynamics simulations of two representative hemiparetic subjects with different levels of walking function classified by self-selected walking speed (i.e., limited community=0.4–0.8 m/s and community walkers=>0.8 m/s) and a speed-matched control were generated to quantify individual muscle contributions to forward propulsion, swing initiation and power generation during the pre-swing phase (i.e., double support phase proceeding toe-off). Simulation analyses identified decreased paretic soleus and gastrocnemius contributions to forward propulsion …


Relationships Between Muscle Contributions To Walking Subtasks And Functional Walking Status In Persons With Post-Stroke Hemiparesis, Allison Kinney, Carrie L. Peterson, Steven A. Kautz, Richard R. Neptune Aug 2010

Relationships Between Muscle Contributions To Walking Subtasks And Functional Walking Status In Persons With Post-Stroke Hemiparesis, Allison Kinney, Carrie L. Peterson, Steven A. Kautz, Richard R. Neptune

Mechanical and Aerospace Engineering Faculty Publications

Walking speed is commonly used to predict stroke severity and assess functional walking status (i.e., household, limited community and community walking status) post-stroke. The underlying mechanisms that limit walking speed (and functional walking status by extension) need to be understood to improve post-stroke rehabilitation. Previous experimental studies have shown correlations between paretic plantarflexor output during the pre-swing phase and walking speed and suggest that the paretic hip flexors can compensate in some hemiparetic subjects. Modeling and simulation studies of healthy walking have shown that the ankle plantarflexors, soleus (SOL) and gastrocnemius (GAS), and uniarticular hip flexors (IL) are essential contributors …