Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Sandstone Wettability And Mixed Gas Composition: Unraveling The Impact Of Co2 In Hydrogen Geo-Storage, Zoha D. Isfehani, Amirmansour J. Jafari, Jalal Fahimpour, Mirhasan Hosseini, Stefan Iglauer, Alireza Keshavarz Jan 2024

Sandstone Wettability And Mixed Gas Composition: Unraveling The Impact Of Co2 In Hydrogen Geo-Storage, Zoha D. Isfehani, Amirmansour J. Jafari, Jalal Fahimpour, Mirhasan Hosseini, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Underground hydrogen storage (UHS) is gaining interest as a secure, long-term solution for storing hydrogen in porous geological formations. In UHS, a cushion gas like CO2 is crucial to maintain the reservoir pressure and optimize recovery. The concept of wettability plays a fundamental role in determining the system's multi-phase displacement characteristics in the porous media. However, there is a gap in the existing literature regarding the wettability of sandstone rocks under geo-storage conditions when H2 and CO2 are injected as the bulk and cushion gases, respectively. To address this gap, we conducted a study investigating the wettability hysteresis phenomenon by …


Micro-Scale Wettability Of Carbonate Rocks Via High-Resolution Esem Imaging, Khaloud Al-Naimi, Muhammad Arif, Mahmoud Aboushanab, Dalaver Anjum, Mohammed Al Kobaisi, Md Motiur Rahman, Mohamed Mahmoud, Stefan Iglauer Sep 2023

Micro-Scale Wettability Of Carbonate Rocks Via High-Resolution Esem Imaging, Khaloud Al-Naimi, Muhammad Arif, Mahmoud Aboushanab, Dalaver Anjum, Mohammed Al Kobaisi, Md Motiur Rahman, Mohamed Mahmoud, Stefan Iglauer

Research outputs 2022 to 2026

The wettability of several materials has been traditionally quantified using macro-scale contact angles. However, precise identification of the three-phase contact (TPC) line is often difficult due to the resolution limit of macro-scale setups. Moreover, micro-level surface chemical heterogeneities can have a notable impact on the predicted wetting behavior which limits macro-scale contact angles. Thus, here, we investigate the micro-scale water wettability of condensed micro-droplets on carbonate rock surfaces via a high-resolution Environmental Scanning Electron Microscopy (ESEM). Macro- and micro-scale contact angles were evaluated under three conditions: 1) natural carbonate surfaces, 2) surfaces aged in crude oil, and 3) surfaces aged …


A Review Of Hydrogen/Rock/Brine Interaction: Implications For Hydrogen Geo-Storage, Masoud Aslannezhad, Muhammad Ali, Azim Kalantariasl, Mohammad Sayyafzadeh, Zhenjiang You, Stefan Iglauer, Alireza Keshavarz Mar 2023

A Review Of Hydrogen/Rock/Brine Interaction: Implications For Hydrogen Geo-Storage, Masoud Aslannezhad, Muhammad Ali, Azim Kalantariasl, Mohammad Sayyafzadeh, Zhenjiang You, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) is currently considered a clean fuel to decrease anthropogenic greenhouse gas emissions and will play a vital role in climate change mitigation. Nevertheless, one of the primary challenges of achieving a complete H2 economy is the large-scale storage of H2, which is unsafe on the surface because H2 is highly compressible, volatile, and flammable. Hydrogen storage in geological formations could be a potential solution to this problem because of the abundance of such formations and their high storage capacities. Wettability plays a critical role in the displacement of formation water and determines …


Effect Of Organic Acids On Co2-Rock And Water-Rock Interfacial Tension: Implications For Co2 Geo-Storage, Ahmed Al-Yaseri, Nurudeen Yekeen, Muhammad Ali, Nilanjan Pal, Amit Verma, Hesham Abdulelah, Hussein Hoteit, Mohammad Sarmadivaleh Jul 2022

Effect Of Organic Acids On Co2-Rock And Water-Rock Interfacial Tension: Implications For Co2 Geo-Storage, Ahmed Al-Yaseri, Nurudeen Yekeen, Muhammad Ali, Nilanjan Pal, Amit Verma, Hesham Abdulelah, Hussein Hoteit, Mohammad Sarmadivaleh

Research outputs 2022 to 2026

A small concentration of organic acid in carbon dioxide (CO2) storage formations and caprocks could significantly alter the wettability of such formations into less water-wet conditions, decreasing the CO2-storage potential and containment security. Recent studies have attempted to infer the influence of the organic acid concentration on the wettability of rock–CO2–brine systems by measuring advancing and receding contact angles. However, no studies have investigated the influence of organic acid contamination on CO2-storage capacities from rock-fluid interfacial tension (IFT) data because solid-brine and solid-CO2 IFT values cannot be experimentally measured. Equilibrium contact angles and rock-fluid IFT datasets were used to evaluate …


Contact Angles Of A Brine On A Bituminous Coal In Compressed Hydrogen, Rossen Sedev, Hamed Akhondzadeh, Mujahid Ali, Alireza Keshavarz, Stefan Iglauer Apr 2022

Contact Angles Of A Brine On A Bituminous Coal In Compressed Hydrogen, Rossen Sedev, Hamed Akhondzadeh, Mujahid Ali, Alireza Keshavarz, Stefan Iglauer

Research outputs 2022 to 2026

Hydrogen storage is a main issue in the establishment of a hydrogen economy. Geo-storage could be a viable solution if hydrogen could be injected into and withdrawn from suitable geological formations, reversibly and reliably. Rock wettability is a major factor as it affects injectivities, withdrawal rates, storage capacities, and containment security. We report here the contact angles of a brine on the surface of a bituminous coal in a pressurized hydrogen atmosphere. Under realistic geo-storage conditions the coal surface was weakly water-wet. Hydrogen pressure increased brine contact angles at 25°C but did not have an impact at 50 or 70°C. …


Synergistic Efficiency Of Zinc Oxide/Montmorillonite Nanocomposites And A New Derived Saponin In Liquid/Liquid/Solid Interface-Included Systems: Application In Nanotechnology-Assisted Enhanced Oil Recovery, Ahmad Nourinia, Abbas Khaksar Manshad, Seyed Reza Shadizadeh, Jagar A. Ali, Stefan Iglauer, Alireza Keshavarz, Amir H. Mohammadi, Muhammad Ali Jan 2022

Synergistic Efficiency Of Zinc Oxide/Montmorillonite Nanocomposites And A New Derived Saponin In Liquid/Liquid/Solid Interface-Included Systems: Application In Nanotechnology-Assisted Enhanced Oil Recovery, Ahmad Nourinia, Abbas Khaksar Manshad, Seyed Reza Shadizadeh, Jagar A. Ali, Stefan Iglauer, Alireza Keshavarz, Amir H. Mohammadi, Muhammad Ali

Research outputs 2022 to 2026

Oil production faces challenges such as limited oil production from carbonate reservoirs, high oil production costs, and environmental issues. Chemical flooding as an enhanced oil recovery (EOR) method (CEOR) can increase oil production by the use of chemical additives such as surfactants into the reservoirs. Surfactants can increase oil recovery by interfacial tension (IFT) reduction and alteration of the rock wettability from oil-wet to water-wet. The synthesis of chemicals such as synthetic surfactants is usually costly and harmful to the environment. To solve these problems, many researchers have oriented on the use of natural surfactants instead of synthetic ones within …


Effect Of Co2 Flooding On The Wettability Evolution Of Sand-Stone, Cut Aja Fauziah, Ahmed Al-Yaseri, Emad Al-Khdheeawi, Nilesh Kumar Jha, Hussein R. Abid, Stefan Iglauer, Christopher Lagat, Ahmed Barifcani Jan 2021

Effect Of Co2 Flooding On The Wettability Evolution Of Sand-Stone, Cut Aja Fauziah, Ahmed Al-Yaseri, Emad Al-Khdheeawi, Nilesh Kumar Jha, Hussein R. Abid, Stefan Iglauer, Christopher Lagat, Ahmed Barifcani

Research outputs 2014 to 2021

Wettability is one of the main parameters controlling CO2 injectivity and the movement of CO2 plume during geological CO2 sequestration. Despite significant research efforts, there is still a high uncertainty associated with the wettability of CO2/brine/rock systems and how they evolve with CO2 exposure. This study, therefore, aims to measure the contact angle of sandstone samples with varying clay content before and after laboratory core flooding at different reservoir pressures, of 10 MPa and 15 MPa, and a temperature of 323 K. The samples’ microstructural changes are also assessed to investigate any potential alteration …


Enhanced Oil Recovery By Hydrophilic Silica Nanofluid: Experimental Evaluation Of The Impact Of Parameters And Mechanisms On Recovery Potential, Tariq A. Chandio, Muhammad A. Manan, Khalil R. Memon, Ghulam Abbas, Ghazanfer R. Abbasi Jan 2021

Enhanced Oil Recovery By Hydrophilic Silica Nanofluid: Experimental Evaluation Of The Impact Of Parameters And Mechanisms On Recovery Potential, Tariq A. Chandio, Muhammad A. Manan, Khalil R. Memon, Ghulam Abbas, Ghazanfer R. Abbasi

Research outputs 2014 to 2021

Nanofluids as an EOR technique are reported to enhance oil recoveries. Among all the nanomaterial silica with promising lab results, economic and environmental acceptability are an ideal material for future applications. Despite the potential to enhance recoveries, understanding the two-fold impact of parameters such as concentration, salinity, stability, injection rate, and irreproducibility of results has arisen ambiguities that have delayed field applications. This integrated study is conducted to ascertain two-fold impacts of concentration and salinity on recovery and stability and evaluates corresponding changes in the recovery mechanism with variance in the parameters. Initially, silica nanofluids’ recovery potential was evaluated by …


Reversible And Irreversible Adsorption Of Bare And Hybrid Silica Nanoparticles Onto Carbonate Surface At Reservoir Condition, Zain-Ul-Abedin Arain, Sarmad Al-Anssari, Muhammad Ali, Shoaib Memon, Masood Ahmed Bhatti, Christopher Lagat, Mohammad Sarmadivaleh Jan 2020

Reversible And Irreversible Adsorption Of Bare And Hybrid Silica Nanoparticles Onto Carbonate Surface At Reservoir Condition, Zain-Ul-Abedin Arain, Sarmad Al-Anssari, Muhammad Ali, Shoaib Memon, Masood Ahmed Bhatti, Christopher Lagat, Mohammad Sarmadivaleh

Research outputs 2014 to 2021

© 2020 Southwest Petroleum University Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. …


Analysis Of Individual Molecular Dynamics Snapshots Simulating Wetting Of Surfaces Using Spheroidal Geometric Constructions, Aleksandr Abramov, Stefan Iglauer Aug 2019

Analysis Of Individual Molecular Dynamics Snapshots Simulating Wetting Of Surfaces Using Spheroidal Geometric Constructions, Aleksandr Abramov, Stefan Iglauer

Research outputs 2014 to 2021

Accurate characterization of wettability of minerals is important for efficient oil recovery and carbon geosequestration. In studies where molecular dynamics simulations are used to compute the contact angle, emphasis is often placed on results or theoretical details of the simulations themselves, overlooking potentially applicable methodologies for determination of the contact angle. In this manuscript, a concept of a method utilizing spheroidal geometric constructions to estimate the contact angle of a water droplet on a silica surface in carbon dioxide atmosphere is outlined and applied to the final snapshots of two molecular dynamics simulation runs. Two carbon dioxide pressures and two …


Application Of The Clayff And The Dreiding Force Fields For Modeling Of Alkylated Quartz Surfaces, Aleksandr Abramov, Stefan Iglauer Apr 2019

Application Of The Clayff And The Dreiding Force Fields For Modeling Of Alkylated Quartz Surfaces, Aleksandr Abramov, Stefan Iglauer

Research outputs 2014 to 2021

To extend applicability and to overcome limitations of combining rules for nonbond potential parameters, in this study, CLAYFF and DREIDING force fields are coupled at the level of atomic site charges to model quartz surfaces with chemisorpt hydrocarbons. Density functional theory and Bader charge analysis are applied to calculate charges of atoms of the OC bond connecting a quartz crystal and an alkyl group. The study demonstrates that the hydrogen atom of the quartz surface hydroxyl group can be removed and its charge can be redistributed among the oxygen and carbon atoms of the OC bond in a manner consistent …


Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer Mar 2019

Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of alkylated quartz surfaces is of primary importance in several technological applications, including the development of oil and gas reservoirs and carbon geo-sequestration. It is intuitively understood and experimentally confirmed that hydroxylated quartz surfaces are hydrophilic. By gradually saturating a hydroxylated (001) α-quartz surface with pentyl groups, we show using molecular dynamics simulations that the surface can also exhibit extreme hydrophobicity. Within a range of surface pentyl group density from 0.29 to 3.18/nm2, the contact angle of a water droplet under 10 MPa pressure of carbon dioxide at 300 K changes from 10–20 to 180°. This study …