Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Reduced-Order Dynamic Modeling And Robust Nonlinear Control Of Fluid Flow Velocity Fields, Anu Kossery Jayaprakash, William Mackunis, Vladimir Golubev, Oksana Stalnov Dec 2021

Reduced-Order Dynamic Modeling And Robust Nonlinear Control Of Fluid Flow Velocity Fields, Anu Kossery Jayaprakash, William Mackunis, Vladimir Golubev, Oksana Stalnov

Publications

A robust nonlinear control method is developed for fluid flow velocity tracking, which formally addresses the inherent challenges in practical implementation of closed-loop active flow control systems. A key challenge being addressed here is flow control design to compensate for model parameter variations that can arise from actuator perturbations. The control design is based on a detailed reduced-order model of the actuated flow dynamics, which is rigorously derived to incorporate the inherent time-varying uncertainty in the both the model parameters and the actuator dynamics. To the best of the authors’ knowledge, this is the first robust nonlinear closed-loop active flow …


Lecture 08: Partial Eigen Decomposition Of Large Symmetric Matrices Via Thick-Restart Lanczos With Explicit External Deflation And Its Communication-Avoiding Variant, Zhaojun Bai Apr 2021

Lecture 08: Partial Eigen Decomposition Of Large Symmetric Matrices Via Thick-Restart Lanczos With Explicit External Deflation And Its Communication-Avoiding Variant, Zhaojun Bai

Mathematical Sciences Spring Lecture Series

There are continual and compelling needs for computing many eigenpairs of very large Hermitian matrix in physical simulations and data analysis. Though the Lanczos method is effective for computing a few eigenvalues, it can be expensive for computing a large number of eigenvalues. To improve the performance of the Lanczos method, in this talk, we will present a combination of explicit external deflation (EED) with an s-step variant of thick-restart Lanczos (s-step TRLan). The s-step Lanczos method can achieve an order of s reduction in data movement while the EED enables to compute eigenpairs in batches along with a number …


Lecture 01: Scalable Solvers: Universals And Innovations, David Keyes Apr 2021

Lecture 01: Scalable Solvers: Universals And Innovations, David Keyes

Mathematical Sciences Spring Lecture Series

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, William Mackunis, Sergey V. Drakunov, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …