Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Rapid Microscopic Fractional Anisotropy Imaging Via An Optimized Linear Regression Formulation., N J J Arezza, D H Y Tse, C A Baron Jul 2021

Rapid Microscopic Fractional Anisotropy Imaging Via An Optimized Linear Regression Formulation., N J J Arezza, D H Y Tse, C A Baron

Medical Biophysics Publications

Water diffusion anisotropy in the human brain is affected by disease, trauma, and development. Microscopic fractional anisotropy (μFA) is a diffusion MRI (dMRI) metric that can quantify water diffusion anisotropy independent of neuron fiber orientation dispersion. However, there are several different techniques to estimate μFA and few have demonstrated full brain imaging capabilities within clinically viable scan times and resolutions. Here, we present an optimized spherical tensor encoding (STE) technique to acquire μFA directly from the 2nd order cumulant expansion of the powder averaged dMRI signal obtained from direct linear regression (i.e. diffusion kurtosis) which requires fewer powder-averaged signals than …


Deep Neural Network Analysis Of Pathology Images With Integrated Molecular Data For Enhanced Glioma Classification And Grading, Linmin Pei, Karra A. Jones, Zeina A. Shboul, James Y. Chen, Khan M. Iftekharuddin Jan 2021

Deep Neural Network Analysis Of Pathology Images With Integrated Molecular Data For Enhanced Glioma Classification And Grading, Linmin Pei, Karra A. Jones, Zeina A. Shboul, James Y. Chen, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Gliomas are primary brain tumors that originate from glial cells. Classification and grading of these tumors is critical to prognosis and treatment planning. The current criteria for glioma classification in central nervous system (CNS) was introduced by World Health Organization (WHO) in 2016. This criteria for glioma classification requires the integration of histology with genomics. In 2017, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) was established to provide up-to-date recommendations for CNS tumor classification, which in turn the WHO is expected to adopt in its upcoming edition. In this work, we propose a novel …


Dynamic Blood-Brain Barrier Regulation In Mild Traumatic Brain Injury, Eoin O'Keeffe, Eoin Kelly, Yuzhe Liu, Chiara Giordano, Eugene Wallace, Mark Hynes, Stephen Tiernan, Aidan Meagher, Chris Greene, Stephanie Hughes, Tom Burke, John Kealy, Niamh Doyle, Alison Hay, Michael Farrell, Gerald A. Grant, Alon Friedman, Ronel Veksler, Michael G. Molloy, James F. Meaney, Niall Pender, David Camarillo, Colin P. Doherty, Matthew Campbell Jan 2020

Dynamic Blood-Brain Barrier Regulation In Mild Traumatic Brain Injury, Eoin O'Keeffe, Eoin Kelly, Yuzhe Liu, Chiara Giordano, Eugene Wallace, Mark Hynes, Stephen Tiernan, Aidan Meagher, Chris Greene, Stephanie Hughes, Tom Burke, John Kealy, Niamh Doyle, Alison Hay, Michael Farrell, Gerald A. Grant, Alon Friedman, Ronel Veksler, Michael G. Molloy, James F. Meaney, Niall Pender, David Camarillo, Colin P. Doherty, Matthew Campbell

Articles

Whereas the diagnosis of moderate and severe traumatic brain injury (TBI) is readily visible on current medical imaging paradigms (magnetic resonance imaging [MRI] and computed tomography [CT] scanning), a far greater challenge is associated with the diagnosis and subsequent management of mild TBI (mTBI), especially concussion which, by definition, is characterized by a normal CT. To investigate whether the integrity of the blood-brain barrier (BBB) is altered in a high-risk population for concussions, we studied professional mixed martial arts (MMA) fighters and adolescent rugby players. Additionally, we performed the linear regression between the BBB disruption defined by increased gadolinium contrast …


Fabrication And Imaging Characterization Of Poly (Dimethyl Siloxane)/Sic Nano-Fillers Samples As Model Biomaterials, Tetiana Soloviova, Viorica Gutu, Zoya Vinokur, Akm S. Rahman, Subhendra Sarkar Dec 2019

Fabrication And Imaging Characterization Of Poly (Dimethyl Siloxane)/Sic Nano-Fillers Samples As Model Biomaterials, Tetiana Soloviova, Viorica Gutu, Zoya Vinokur, Akm S. Rahman, Subhendra Sarkar

Publications and Research

Biopolymers are being developed with embedded nanostructures for in vivo drug delivery to treat various diseases including cancers. In the current project we developed fabrication steps to prepare two biopolymers, poly di-methoxy siloxane (PDMS) with 0-0.9 vol% of SiC nano whisker (fillers) followed by non- destructive characterization. Optical reflection microscopy (5-100X) was performed to ensure loading and distribution of increasing SiC content. Optical microscopy showed progressively higher SiC distribution as filler loading was increased from 0-0.9 vol%. X-ray imaging at low kV (kilovoltage) and low mAs (milliamperage per second) were optimized to allow distinction between filled PDMS with SiC concentration …


Manganese-Enhanced Magnetic Resonance Imaging: Overview And Central Nervous System Applications With A Focus On Neurodegeneration, Ryan A. Cloyd, Shon A. Koren, Jose F. Abisambra Dec 2018

Manganese-Enhanced Magnetic Resonance Imaging: Overview And Central Nervous System Applications With A Focus On Neurodegeneration, Ryan A. Cloyd, Shon A. Koren, Jose F. Abisambra

Physiology Faculty Publications

Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans. Here, we review historical perspectives that follow the evolution of applied MRI research into MEMRI with particular focus on its potential toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI in CNS investigations and …


Neuroimaging Biomarkers Of Mtor Inhibition On Vascular And Metabolic Functions In Aging Brain And Alzheimer’S Disease, Jennifer Lee, Lucille M. Yanckello, David Ma, Jared D. Hoffman, Ishita Parikh, Scott Thalman, Bjoern Bauer, Anika M. S. Hartz, Fahmeed Hyder, Ai-Ling Lin Jul 2018

Neuroimaging Biomarkers Of Mtor Inhibition On Vascular And Metabolic Functions In Aging Brain And Alzheimer’S Disease, Jennifer Lee, Lucille M. Yanckello, David Ma, Jared D. Hoffman, Ishita Parikh, Scott Thalman, Bjoern Bauer, Anika M. S. Hartz, Fahmeed Hyder, Ai-Ling Lin

Pharmacology and Nutritional Sciences Faculty Publications

The mechanistic target of rapamycin (mTOR) is a nutrient sensor of eukaryotic cells. Inhibition of mechanistic mTOR signaling can increase life and health span in various species via interventions that include rapamycin and caloric restriction (CR). In the central nervous system, mTOR inhibition demonstrates neuroprotective patterns in aging and Alzheimer’s disease (AD) by preserving mitochondrial function and reducing amyloid beta retention. However, the effects of mTOR inhibition for in vivo brain physiology remain largely unknown. Here, we review recent findings of in vivo metabolic and vascular measures using non-invasive, multimodal neuroimaging methods in rodent models for brain aging and AD. …


The Multimodal Brain Tumor Image Segmentation Benchmark (Brats), Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Khan M. Iftekharuddin, Syed M.S. Reza Jan 2015

The Multimodal Brain Tumor Image Segmentation Benchmark (Brats), Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Khan M. Iftekharuddin, Syed M.S. Reza

Electrical & Computer Engineering Faculty Publications

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low-and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions …