Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Medicine and Health Sciences

PDF

Brain

University of Kentucky

2013

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Binding, Transcytosis And Biodistribution Of Anti-Pecam-1 Iron Oxide Nanoparticles For Brain-Targeted Delivery, Mo Dan, David B. Cochran, Robert A. Yokel, Thomas D. Dziubla Nov 2013

Binding, Transcytosis And Biodistribution Of Anti-Pecam-1 Iron Oxide Nanoparticles For Brain-Targeted Delivery, Mo Dan, David B. Cochran, Robert A. Yokel, Thomas D. Dziubla

Pharmaceutical Sciences Faculty Publications

OBJECTIVE: Characterize the flux of platelet-endothelial cell adhesion molecule (PECAM-1) antibody-coated superparamagnetic iron oxide nanoparticles (IONPs) across the blood-brain barrier (BBB) and its biodistribution in vitro and in vivo.

METHODS: Anti-PECAM-1 IONPs and IgG IONPs were prepared and characterized in house. The binding affinity of these nanoparticles was investigated using human cortical microvascular endothelial cells (hCMEC/D3). Flux assays were performed using a hCMEC/D3 BBB model. To test their immunospecificity index and biodistribution, nanoparticles were given to Sprague Dawley rats by intra-carotid infusion. The capillary depletion method was used to elucidate their distribution between the BBB and brain parenchyma.

RESULTS: Anti-PECAM-1 …


Metal-Based Nanoparticle Interactions With The Nervous System: The Challenge Of Brain Entry And The Risk Of Retention In The Organism, Robert A. Yokel, Eric A. Grulke, Robert C. Macphail Jul 2013

Metal-Based Nanoparticle Interactions With The Nervous System: The Challenge Of Brain Entry And The Risk Of Retention In The Organism, Robert A. Yokel, Eric A. Grulke, Robert C. Macphail

Pharmaceutical Sciences Faculty Publications

This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical–chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in …