Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Computer Sciences

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 4623

Full-Text Articles in Engineering

Crest Or Trough? How Research Libraries Used Emerging Technologies To Survive The Pandemic, So Far, Scout Calvert Oct 2021

Crest Or Trough? How Research Libraries Used Emerging Technologies To Survive The Pandemic, So Far, Scout Calvert

Faculty Publications, UNL Libraries

Introduction

In the first months of the COVID-19 pandemic, it was impossible to tell if we were at the crest of a wave of new transmissions, or a trough of a much larger wave, still yet to peak. As of this writing, as colleges and universities prepare for mostly in-person fall 2021 semesters, case counts in the United States are increasing again after a decline that coincided with easier access to the COVID vaccine. Plans for a return to campus made with confidence this spring may be in doubt, as we climb the curve of what is already the second ...


Cleanpage: Fast And Clean Document And Whiteboard Capture, Jane Courtney Oct 2021

Cleanpage: Fast And Clean Document And Whiteboard Capture, Jane Courtney

Articles

The move from paper to online is not only necessary for remote working, it is also significantly more sustainable. This trend has seen a rising need for the high-quality digitization of content from pages and whiteboards to sharable online material. However, capturing this information is not always easy nor are the results always satisfactory. Available scanning apps vary in their usability and do not always produce clean results, retaining surface imperfections from the page or whiteboard in their output images. CleanPage, a novel smartphone-based document and whiteboard scanning system, is presented. CleanPage requires one button-tap to capture, identify, crop, and ...


Sustainable Maritime Crude Oil Transportation: A Split Pickup And Split Delivery Problem With Time Windows, Hiba Yahyaoui, Nadia Dahmani, Saoussen Krichen Oct 2021

Sustainable Maritime Crude Oil Transportation: A Split Pickup And Split Delivery Problem With Time Windows, Hiba Yahyaoui, Nadia Dahmani, Saoussen Krichen

All Works

This paper studies a novel sustainable vessel routing problem modeling considering the multi-compartment, split pickup and split delivery, and time windows concepts. In the presented problem, oil tankers transport crude oil from supply ports to demand ports around the globe. The objective is to find ship routes, as well as port arrival and departure times, in a way that minimizes transportation costs. As a second objective, we considered the sustainability aspect by minimizing the vessel energy efficiency operational indicator. Multiple products are transported by a heterogeneous fleet of tankers. Small realistic test instances are solved with the exact method.


What Is The Relationship Between Language And Thought?: Linguistic Relativity And Its Implications For Copyright, Christopher S. Yoo Sep 2021

What Is The Relationship Between Language And Thought?: Linguistic Relativity And Its Implications For Copyright, Christopher S. Yoo

Faculty Scholarship at Penn Law

To date, copyright scholarship has almost completely overlooked the linguistics and cognitive psychology literature exploring the connection between language and thought. An exploration of the two major strains of this literature, known as universal grammar (associated with Noam Chomsky) and linguistic relativity (centered around the Sapir-Whorf hypothesis), offers insights into the copyrightability of constructed languages and of the type of software packages at issue in Google v. Oracle recently decided by the Supreme Court. It turns to modularity theory as the key idea unifying the analysis of both languages and software in ways that suggest that the information filtering associated ...


Sediqa: Sound Emitting Document Image Quality Assessment In A Reading Aid For The Visually Impaired, Jane Courtney Aug 2021

Sediqa: Sound Emitting Document Image Quality Assessment In A Reading Aid For The Visually Impaired, Jane Courtney

Articles

For visually impaired people (VIPs), the ability to convert text to sound can mean a new level of independence or the simple joy of a good book. With significant advances in optical character recognition (OCR) in recent years, a number of reading aids are appearing on the market. These reading aids convert images captured by a camera to text which can then be read aloud. However, all of these reading aids suffer from a key issue—the user must be able to visually target the text and capture an image of sufficient quality for the OCR algorithm to function—no ...


Forest Park Trail Monitoring, Adan Robles, Colton S. Maybee, Erin Dougherty Aug 2021

Forest Park Trail Monitoring, Adan Robles, Colton S. Maybee, Erin Dougherty

REU Final Reports

Forest Park, one of the largest public parks in the United States with over 40 trails to pick from when planning a hiking trip. One of the main problems this park has is that there are too many trails, and a lot of the trails extend over 3 miles. Due to these circumstances’ trails are not checked frequently and hikers are forced to hike trails in the area with no warnings of potential hazards they can encounter. In this paper I researched how Forest Park currently monitors its trails and then set up a goal to solve the problem. We ...


Digitally Reporting Trail Obstructions In Forest Park, Colton S. Maybee Aug 2021

Digitally Reporting Trail Obstructions In Forest Park, Colton S. Maybee

REU Final Reports

The inclusion of technology on the trail can lead to better experiences for everyone involved in the hobby. Hikers can play a more prominent role in the maintenance of the trails by being able to provide better reports of obstructions while directly on the trail. This paper goes into the project of revamping the obstruction report system applied at Forest Park in Portland, Oregon. Most of my contributions to the project focus on mobile app development with some research into path planning algorithms related to the continuations of this project.


Forensic Artifact Finder (Forensicaf): An Approach & Tool For Leveraging Crowd-Sourced Curated Forensic Artifacts, Tyler Balon, Krikor Herlopian, Ibrahim Baggili, Cinthya Grajeda-Mendez Aug 2021

Forensic Artifact Finder (Forensicaf): An Approach & Tool For Leveraging Crowd-Sourced Curated Forensic Artifacts, Tyler Balon, Krikor Herlopian, Ibrahim Baggili, Cinthya Grajeda-Mendez

Electrical & Computer Engineering and Computer Science Faculty Publications

Current methods for artifact analysis and understanding depend on investigator expertise. Experienced and technically savvy examiners spend a lot of time reverse engineering applications while attempting to find crumbs they leave behind on systems. This takes away valuable time from the investigative process, and slows down forensic examination. Furthermore, when specific artifact knowledge is gained, it stays within the respective forensic units. To combat these challenges, we present ForensicAF, an approach for leveraging curated, crowd-sourced artifacts from the Artifact Genome Project (AGP). The approach has the overarching goal of uncovering forensically relevant artifacts from storage media. We explain our approach ...


Forensicast: A Non-Intrusive Approach & Tool For Logical Forensic Acquisition & Analysis Of The Google Chromecast Tv, Alex Sitterer, Nicholas Dubois, Ibrahim Baggili Aug 2021

Forensicast: A Non-Intrusive Approach & Tool For Logical Forensic Acquisition & Analysis Of The Google Chromecast Tv, Alex Sitterer, Nicholas Dubois, Ibrahim Baggili

Electrical & Computer Engineering and Computer Science Faculty Publications

The era of traditional cable Television (TV) is swiftly coming to an end. People today subscribe to a multitude of streaming services. Smart TVs have enabled a new generation of entertainment, not only limited to constant on-demand streaming as they now offer other features such as web browsing, communication, gaming etc. These functions have recently been embedded into a small IoT device that can connect to any TV with High Definition Multimedia Interface (HDMI) input known as Google Chromecast TV. Its wide adoption makes it a treasure trove for potential digital evidence. Our work is the primary source on forensically ...


Another Brick In The Wall: An Exploratory Analysis Of Digital Forensics Programs In The United States, Syria Mccullough, Stella Abudu, Ebere Onwubuariri, Ibrahim Baggili Aug 2021

Another Brick In The Wall: An Exploratory Analysis Of Digital Forensics Programs In The United States, Syria Mccullough, Stella Abudu, Ebere Onwubuariri, Ibrahim Baggili

Electrical & Computer Engineering and Computer Science Faculty Publications

We present a comprehensive review of digital forensics programs offered by universities across the United States (U.S.). While numerous studies on digital forensics standards and curriculum exist, few, if any, have examined digital forensics courses offered across the nation. Since digital forensics courses vary from university to university, online course catalogs for academic institutions were evaluated to curate a dataset. Universities were selected based on online searches, similar to those that would be made by prospective students. Ninety-seven (n = 97) degree programs in the U.S. were evaluated. Overall, results showed that advanced technical courses are missing from curricula ...


Duck Hunt: Memory Forensics Of Usb Attack Platforms, Tyler Thomas, Mathew Piscitelli, Bhavik Ashok Nahar, Ibrahim Baggili Aug 2021

Duck Hunt: Memory Forensics Of Usb Attack Platforms, Tyler Thomas, Mathew Piscitelli, Bhavik Ashok Nahar, Ibrahim Baggili

Electrical & Computer Engineering and Computer Science Faculty Publications

To explore the memory forensic artifacts generated by USB-based attack platforms, we analyzed two of the most popular commercially available devices, Hak5's USB Rubber Ducky and Bash Bunny. We present two open source Volatility plugins, usbhunt and dhcphunt, which extract artifacts generated by these USB attacks from Windows 10 system memory images. Such artifacts include driver-related diagnostic events, unique device identifiers, and DHCP client logs. Our tools are capable of extracting metadata-rich Windows diagnostic events generated by any USB device. The device identifiers presented in this work may also be used to definitively detect device usage. Likewise, the DHCP ...


Power-Over-Tether Unmanned Aerial System Leveraged For Trajectory Influenced Atmospheric Sensing, Daniel Rico Aug 2021

Power-Over-Tether Unmanned Aerial System Leveraged For Trajectory Influenced Atmospheric Sensing, Daniel Rico

Computer Science and Engineering: Theses, Dissertations, and Student Research

The use of unmanned aerial systems (UASs) in agriculture has risen in the past decade and is helping to modernize agriculture. UASs collect and elucidate data previously difficult to obtain and are used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this thesis, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS configured for long-term, high throughput atmospheric monitoring with an array of ...


Aerial Flight Paths For Communication, Alisha Bevins Aug 2021

Aerial Flight Paths For Communication, Alisha Bevins

Computer Science and Engineering: Theses, Dissertations, and Student Research

This body of work presents an iterative process of refinement to understand naive perception of communication using the motion of an unmanned aerial vehicle (UAV). This includes what people believe the UAV is trying to communicate, and how they expect to respond through physical action or emotional response. Previous work in this area sought to communicate without clear definitions of the states attempting to be conveyed. In an attempt to present more concrete states and better understand specific motion perception, this work goes through multiple iterations of state elicitation and label assignment. The lessons learned in this work will be ...


Using Contextual Bandits To Improve Traffic Performance In Edge Network, Aziza Al Zadjali Aug 2021

Using Contextual Bandits To Improve Traffic Performance In Edge Network, Aziza Al Zadjali

Computer Science and Engineering: Theses, Dissertations, and Student Research

Edge computing network is a great candidate to reduce latency and enhance performance of the Internet. The flexibility afforded by Edge computing to handle data creates exciting range of possibilities. However, Edge servers have some limitations since Edge computing process and analyze partial sets of information. It is challenging to allocate computing and network resources rationally to satisfy the requirement of mobile devices under uncertain wireless network, and meet the constraints of datacenter servers too. To combat these issues, this dissertation proposes smart multi armed bandit algorithms that decide the appropriate connection setup for multiple network access technologies on the ...


A Real-World, Hybrid Event Sequence Generation Framework For Android Apps, Jun Sun Aug 2021

A Real-World, Hybrid Event Sequence Generation Framework For Android Apps, Jun Sun

Computer Science and Engineering: Theses, Dissertations, and Student Research

Generating meaningful inputs for Android apps is still a challenging issue that needs more research. Past research efforts have shown that random test generation is still an effective means to exercise User-Interface (UI) events to achieve high code coverage. At the same time, heuristic search approaches can effectively reach specified code targets. Our investigation shows that these approaches alone are insufficient to generate inputs that can exercise specific code locations in complex Android applications.

This thesis introduces a hybrid approach that combines two different input generation techniques--heuristic search based on genetic algorithm and random instigation of UI events, to reach ...


Thunderrw: An In-Memory Graph Random Walk Engine, Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, Yuchen Li Aug 2021

Thunderrw: An In-Memory Graph Random Walk Engine, Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, Yuchen Li

Research Collection School Of Computing and Information Systems

As random walk is a powerful tool in many graph processing, mining and learning applications, this paper proposes an efficient inmemory random walk engine named ThunderRW. Compared with existing parallel systems on improving the performance of a single graph operation, ThunderRW supports massive parallel random walks. The core design of ThunderRW is motivated by our profiling results: common RW algorithms have as high as 73.1% CPU pipeline slots stalled due to irregular memory access, which suffers significantly more memory stalls than the conventional graph workloads such as BFS and SSSP. To improve the memory efficiency, we first design a ...


Context-Aware Outstanding Fact Mining From Knowledge Graphs, Yueji Yang, Yuchen Li, Panagiotis Karras, Anthony Tung Aug 2021

Context-Aware Outstanding Fact Mining From Knowledge Graphs, Yueji Yang, Yuchen Li, Panagiotis Karras, Anthony Tung

Research Collection School Of Computing and Information Systems

An Outstanding Fact (OF) is an attribute that makes a target entity stand out from its peers. The mining of OFs has important applications, especially in Computational Journalism, such as news promotion, fact-checking, and news story finding. However, existing approaches to OF mining: (i) disregard the context in which the target entity appears, hence may report facts irrelevant to that context; and (ii) require relational data, which are often unavailable or incomplete in many application domains. In this paper, we introduce the novel problem of mining Contextaware Outstanding Facts (COFs) for a target entity under a given context specified by ...


A Lagrangian Column Generation Approach For The Probabilistic Crowdsourced Logistics Planning, Chung-Kyun Han, Shih-Fen Cheng Aug 2021

A Lagrangian Column Generation Approach For The Probabilistic Crowdsourced Logistics Planning, Chung-Kyun Han, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

In recent years we have increasingly seen the movement for the retail industry to move their operations online. Along the process, it has created brand new patterns for the fulfillment service, and the logistics service providers serving these retailers have no choice but to adapt. The most challenging issues faced by all logistics service providers are the highly fluctuating demands and the shortening response times. All these challenges imply that maintaining a fixed fleet will either be too costly or insufficient. One potential solution is to tap into the crowdsourced workforce. However, existing industry practices of relying on human planners ...


Automated Taxi Queue Management At High-Demand Venues, Mengyu Ji, Shih-Fen Cheng Aug 2021

Automated Taxi Queue Management At High-Demand Venues, Mengyu Ji, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

In this paper, we seek to identify an effective management policy that could reduce supply-demand gaps at taxi queues serving high-density locations where demand surges frequently happen. Unlike current industry practice, which relies on broadcasting to attract taxis to come and serve the queue, we propose more proactive and adaptive approaches to handle demand surges. Our design objective is to reduce the cumulative supply-demand gaps as much as we could by sending notifications to individual taxis. To address this problem, we first propose a highly effective passenger demand prediction system that is based on the real-time flight arrival information. By ...


Innovative Computational Methods For Pharmaceutical Problem Solving A Review Part Ii: Serious Gaming, Heather R. Campbell, Robert A. Lodder Aug 2021

Innovative Computational Methods For Pharmaceutical Problem Solving A Review Part Ii: Serious Gaming, Heather R. Campbell, Robert A. Lodder

Pharmaceutical Sciences Faculty Publications

Serious gaming has begun to take a foothold in pharmaceutical problem-solving. Companies such as Akili's Interactive are seeing success in the form of positive clinical trial results and FDA approval of digital therapeutics. Academic researchers have begun exploring novel uses for serious gaming in the way of protein design and more with promising results. This paper provides a review of such topics in addition to topics of game repurposing- repurposing a game originally intended for entertainment into a serious game-such as Minecraft and America's Army. Reviewing these topics this paper shows the utility of serious gaming as a ...


Learning And Exploiting Shaped Reward Models For Large Scale Multiagent Rl, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau Aug 2021

Learning And Exploiting Shaped Reward Models For Large Scale Multiagent Rl, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Many real world systems involve interaction among large number of agents to achieve a common goal, for example, air traffic control. Several model-free RL algorithms have been proposed for such settings. A key limitation is that the empirical reward signal in model-free case is not very effective in addressing the multiagent credit assignment problem, which determines an agent's contribution to the team's success. This results in lower solution quality and high sample complexity. To address this, we contribute (a) an approach to learn a differentiable reward model for both continuous and discrete action setting by exploiting the collective ...


Learning And Exploiting Shaped Reward Models For Large Scale Multiagent Rl, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau Aug 2021

Learning And Exploiting Shaped Reward Models For Large Scale Multiagent Rl, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Many real world systems involve interaction among large number of agents to achieve a common goal, for example, air traffic control. Several model-free RL algorithms have been proposed for such settings. A key limitation is that the empirical reward signal in model-free case is not very effective in addressing the multiagent credit assignment problem, which determines an agent's contribution to the team's success. This results in lower solution quality and high sample complexity. To address this, we contribute (a) an approach to learn a differentiable reward model for both continuous and discrete action setting by exploiting the collective ...


Estimating Homophily In Social Networks Using Dyadic Predictions, George Berry, Antonio Sirianni, Ingmar Weber, Jisun An, Michael Macy Aug 2021

Estimating Homophily In Social Networks Using Dyadic Predictions, George Berry, Antonio Sirianni, Ingmar Weber, Jisun An, Michael Macy

Research Collection School Of Computing and Information Systems

Predictions of node categories are commonly used to estimate homophily and other relational properties in networks. However, little is known about the validity of using predictions for this task. We show that estimating homophily in a network is a problem of predicting categories of dyads (edges) in the graph. Homophily estimates are unbiased when predictions of dyad categories are unbiased. Node-level prediction models, such as the use of names to classify ethnicity or gender, do not generally produce unbiased predictions of dyad categories and therefore produce biased homophily estimates. Bias comes from three sources: sampling bias, correlation between model errors ...


Innovative Computational Methods For Pharmaceutical Problem Solving A Review Part I: The Drug Development Process, Heather R. Campbell, Robert A. Lodder Aug 2021

Innovative Computational Methods For Pharmaceutical Problem Solving A Review Part I: The Drug Development Process, Heather R. Campbell, Robert A. Lodder

Pharmaceutical Sciences Faculty Publications

Computational methods have provided pharmaceutical scientists and engineers a means to go beyond what's possible with experimental testing alone. Providing a means to study active pharmaceutical ingredients (API), excipients, and drug interactions at or near-atomic levels. This paper provides a review of this and other innovative computational methods used for solving pharmaceutical problems throughout the drug development process. Part one of two this paper will emphasize the role of computational methods and game theory in solving pharmaceutical challenges.


Graphical Models In Reconstructability Analysis And Bayesian Networks, Marcus Harris, Martin Zwick Jul 2021

Graphical Models In Reconstructability Analysis And Bayesian Networks, Marcus Harris, Martin Zwick

Systems Science Faculty Publications and Presentations

Reconstructability Analysis (RA) and Bayesian Networks (BN) are both probabilistic graphical modeling methodologies used in machine learning and artificial intelligence. There are RA models that are statistically equivalent to BN models and there are also models unique to RA and models unique to BN. The primary goal of this paper is to unify these two methodologies via a lattice of structures that offers an expanded set of models to represent complex systems more accurately or more simply. The conceptualization of this lattice also offers a framework for additional innovations beyond what is presented here. Specifically, this paper integrates RA and ...


Using Machine Learning To Develop A Fully Automated Soybean Nodule Acquisition Pipeline (Snap), Talukder Zaki Jubery, Clayton N. Carley, Arti Singh, Soumik Sarkar, Baskar Ganapathysubramanian, Asheesh K. Singh Jul 2021

Using Machine Learning To Develop A Fully Automated Soybean Nodule Acquisition Pipeline (Snap), Talukder Zaki Jubery, Clayton N. Carley, Arti Singh, Soumik Sarkar, Baskar Ganapathysubramanian, Asheesh K. Singh

Mechanical Engineering Publications

Nodules form on plant roots through the symbiotic relationship between soybean (Glycine max L. Merr.) roots and bacteria (Bradyrhizobium japonicum) and are an important structure where atmospheric nitrogen (N2) is fixed into bioavailable ammonia (NH3) for plant growth and development. Nodule quantification on soybean roots is a laborious and tedious task; therefore, assessment is frequently done on a numerical scale that allows for rapid phenotyping, but is less informative and suffers from subjectivity. We report the Soybean Nodule Acquisition Pipeline (SNAP) for nodule quantification that combines RetinaNet and UNet deep learning architectures for object (i.e., nodule) detection and segmentation ...


Detecting Oods As Datapoints With High Uncertainty, Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Oleg Sokolsky, Insup Lee Jul 2021

Detecting Oods As Datapoints With High Uncertainty, Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Oleg Sokolsky, Insup Lee

Departmental Papers (CIS)

Deep neural networks (DNNs) are known to produce incorrect predictions with very high confidence on out-of-distribution inputs (OODs). This limitation is one of the key challenges in the adoption of DNNs in high-assurance systems such as autonomous driving, air traffic management, and medical diagnosis. This challenge has received significant attention recently, and several techniques have been developed to detect inputs where the model’s prediction cannot be trusted. These techniques detect OODs as datapoints with either high epistemic uncertainty or high aleatoric uncertainty. We demonstrate the difference in the detection ability of these techniques and propose an ensemble approach for ...


Detection Of Message Injection Attacks Onto The Can Bus Using Similarities Of Successive Messages-Sequence Graphs, Mubark Jedh, Lotfi Ben Othmane, Noor Ahmed, Bharat Bhargava Jul 2021

Detection Of Message Injection Attacks Onto The Can Bus Using Similarities Of Successive Messages-Sequence Graphs, Mubark Jedh, Lotfi Ben Othmane, Noor Ahmed, Bharat Bhargava

Electrical and Computer Engineering Publications

The smart features of modern cars are enabled by a number of Electronic Control Units (ECUs) components that communicate through an in-vehicle network, known as Controller Area Network (CAN) bus. The fundamental challenge is the security of the communication link where an attacker can inject messages (e.g., increase the speed) that may impact the safety of the driver. Most of existing practical IDS solutions rely on the knowledge of the identity of the ECUs, which is proprietary information. This paper proposes a message injection attack detection solution that is independent of the IDs of the ECUs. First, we represent ...


Reconfiguring Non-Convex Holes In Pivoting Modular Cube Robots, Daniel Adam Feshbach, Cynthia Sung Jul 2021

Reconfiguring Non-Convex Holes In Pivoting Modular Cube Robots, Daniel Adam Feshbach, Cynthia Sung

Lab Papers (GRASP)

We present an algorithm for self-reconfiguration of admissible 3D configurations of pivoting modular cube robots with holes of arbitrary shape and number. Cube modules move across the surface of configurations by pivoting about shared edges, enabling configurations to reshape themselves. Previous work provides a reconfiguration algorithm for admissible 3D configurations containing no non-convex holes; we improve upon this by handling arbitrary admissible 3D configurations. The key insight specifies a point in the deconstruction of layers enclosing non-convex holes at which we can pause and move inner modules out of the hole. We prove this happens early enough to maintain connectivity ...


Reshaping The Landscape Of The Future: Software-Defined Manufacturing, Lei Xu, Lin Chen, Zhimin Gao, Hiram Moya, Weidong Shi Jul 2021

Reshaping The Landscape Of The Future: Software-Defined Manufacturing, Lei Xu, Lin Chen, Zhimin Gao, Hiram Moya, Weidong Shi

Computer Science Faculty Publications and Presentations

We describe the concept of software-defined manufacturing, which divides the manufacturing ecosystem into software definition and physical manufacturing layers. Software-defined manufacturing allows better resource sharing and collaboration, and it has the potential to transform the existing manufacturing sector.