Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Energy Harvesting Sensors And Their Role In Fostering Sustainable Air Quality Monitoring, Tomas Valentin, Li Geng Dec 2023

Energy Harvesting Sensors And Their Role In Fostering Sustainable Air Quality Monitoring, Tomas Valentin, Li Geng

Publications and Research

This research presents a comprehensive investigation into Energy Harvesting Sensors and their role in fostering sustainable air quality monitoring. The primary objective is to explore the viability of energy harvesting technologies in energizing sensor networks devoted to the real-time collection of air quality data, emphasizing the reduction of environmental impact and maintenance demands. The study delves into the integration of energy harvesting mechanisms, including solar and piezoelectric kinetic energy, to power advanced sensor nodes capable of detecting pollutants, particulate matter, and gas concentrations. The findings of this research highlight the significant benefits of energy harvesting sensors, including enhanced sustainability, long-term …


Automated Robotic Light Bulb Testing Platform, Agha I. Akram, Muhammad Ali Ummy May 2022

Automated Robotic Light Bulb Testing Platform, Agha I. Akram, Muhammad Ali Ummy

Publications and Research

The main purpose of this project is to create a functional prototype of a multilayered system that incorporates aspects of electrical, mechanical, and computer engineering technology. The main objective of the system is to be able to determine whether a light bulb is working or not. The building blocks of this system are a robotic arm that is able to slide along a rail (for added mobility), a conveyor belt, and an electromechanical device that holds and tests light bulbs. Initially, the robot arm picks up a light bulb and places it into the holder which then tests it. A …


Smart Iot Sprinkler System, Galib F. Rahman Dec 2018

Smart Iot Sprinkler System, Galib F. Rahman

Publications and Research

The average family spends more than $1000 in water costs per year. One-way water is commonly wasted in many households is via inefficient sprinkler systems for lawns. Current technology has enabled the development of automatic sprinkler systems, which can be preconfigured to operate at desired times of day and intervals. Although these systems may reduce the amount of water utilized overall, they are not weather forecast aware. In situations when rainfall is upcoming the systems still water the lawn. In this project, we plan to implement a smart sprinkler system that has full awareness of upcoming weather and take account …


Review Of Recent Nuclear Magnetic Resonance Studies Of Ion Transport In Polymer Electrolytes, Stephen Munoz, Steven Greenbaum Nov 2018

Review Of Recent Nuclear Magnetic Resonance Studies Of Ion Transport In Polymer Electrolytes, Stephen Munoz, Steven Greenbaum

Publications and Research

Current and future demands for increasing the energy density of batteries without sacrificing safety has led to intensive worldwide research on all solid state Li-based batteries. Given the physical limitations on inorganic ceramic or glassy solid electrolytes, development of polymer electrolytes continues to be a high priority. This brief review covers several recent alternative approaches to polymer electrolytes based solely on poly(ethyleneoxide) (PEO) and the use of nuclear magnetic resonance (NMR) to elucidate structure and ion transport properties in these materials.


Effect Of Wireless Communication Delay On Dc Microgrids Performance, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Oct 2018

Effect Of Wireless Communication Delay On Dc Microgrids Performance, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper investigates the effect of wireless communication technologies latency on the converters and the bus voltage of centrally communication based controlled DC microgrids (MGs) during islanding. A DC microgrid with its communication based control scheme was modeled to show the impact of latency. Simulation results show that the impact may be severe depending on the design, and the operational condition of the microgrid before latency occurs.


Impact Of Communication Latency On The Bus Voltage Of Centrally Controlled Dc Microgrid During Islanding, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Oct 2018

Impact Of Communication Latency On The Bus Voltage Of Centrally Controlled Dc Microgrid During Islanding, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

Maintaining a sustainable and reliable source of energy to supply critical loads within a renewable energy based microgrid (MG) during blackouts is directly related to its bus voltage variations. For example, voltage variation might trigger protection devices and disconnect DERs within the MG. Centrally controlled MGs (CCMGs) type is dependent on communication. Therefore, it is very important to analyze the impact of communication networks performance degradation, such as latency, on the bus voltage of CCMGs. This paper investigates the effect of wireless communication technologies latency on the bus voltage and performance of centralized DC MGs. Two mathematical models were developed …


Hardware Based Testing Of Communication Based Control For Dc Microgrid, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Nov 2017

Hardware Based Testing Of Communication Based Control For Dc Microgrid, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper further describes our work presented in Industry Application Society 2016 Conference, with more details related to the control and operation of the microgrid. The DC microgrid facility was custom designed and implemented at CCNY with minimal off-the-shelf components to enable flexibility and reconfiguration capability. The design steps, requirements, and experimental results of the developed testbed were discussed. As a case study, a central controller for energy management algorithm was developed and tested under several operational scenarios. The experimental results verify the applicability of the developed testbed for validating DC microgrid controllers.


Energy Management Algorithm For Resilient Controlled Delivery Grids, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed, Haim Grebel, Roberto Rojas-Cessa Oct 2017

Energy Management Algorithm For Resilient Controlled Delivery Grids, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed, Haim Grebel, Roberto Rojas-Cessa

Publications and Research

Resilience of the power grid is most challenged at power blackouts since the issues that led to it may not be fully resolved by the time the power is back. In this paper, a Real-Time Energy Management Algorithm (RTEMA) has been developed to increase the resilience of power systems based on the controlled delivery grid (CDG) concept. In a CDG, loads communicate with a central controller, periodically sending requests for power. The central controller runs an algorithm, based on which it may decide whether to grant the requested energy fully or partially. Therefore, the CDG limits loads discretionary access to …


Quantitative Analysis Of Regenerative Energy In Electric Rail Traction Systems, Mahmoud Saleh, Oindrilla Dutta, Yusef Esa, Ahmed Mohamed Oct 2017

Quantitative Analysis Of Regenerative Energy In Electric Rail Traction Systems, Mahmoud Saleh, Oindrilla Dutta, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper aims at determining the influential factors affecting regenerative braking energy in DC rail transit systems. This has been achieved by quantitatively evaluating the dependence of regenerative energy on various parameters, such as vehicle dynamics, train scheduling, ground inclination and efficiency of the electrical devices. The recuperated power and energy have been presented by a mathematical model, comprising of a set of empirical forms, which allows for thorough analysis. A detailed simulation model of a typical DC-traction system has been developed to validate the developed empirical forms. The results verified the validity of the proposed mathematical model, and demonstrated …


Optimal Microgrids Placement In Electric Distribution Systems Using Complex Network Framework, Mahmoud Saleh, Yusef Esa, Nwabueze Onuorah, Ahmed Mohamed Oct 2017

Optimal Microgrids Placement In Electric Distribution Systems Using Complex Network Framework, Mahmoud Saleh, Yusef Esa, Nwabueze Onuorah, Ahmed Mohamed

Publications and Research

This paper provides a new approach to find the optimal location for Microgrids (MGs) in electric distribution systems using complex network analysis. An optimal location in this paper refers to a location that would result in increased grid resilience, reduced power losses, less line loading, higher voltage stability and secured supply to critical loads during power outage. The criteria used to find the optimal placement of MGs were based on the centrality analysis adopted from complex network theory, the center of mass concept used in physics, and the controlled delivery grid (CDG) concept. An IEEE 30-bus system was used as …


Centralized Control For Dc Microgrid Using Finite State Machine, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Apr 2017

Centralized Control For Dc Microgrid Using Finite State Machine, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

In this paper, an autonomous communication-based centralized control for DC microgrids (MG) has been developed and implemented. The proposed controller enables smooth transition between various operating modes. Finite state machine (FSM) has been used to mathematically describe the various operating modes (states), and events that may lead to mode changes (transitions). Therefore, the developed centralized controller aims at optimizing the performance of MG during all possible operational scenarios, while maintaining its reliability and stability. Results of selected cases have been presented. These results show stable transition between modes, verifying the validity and applicability of the proposed controller.


Design And Implementation Of Ccny Dc Microgrid Testbed, Mahmoud Saleh, Yusef Esa, Yassine Mhandi, Werner Brandauer, Ahmed Mohamed Oct 2016

Design And Implementation Of Ccny Dc Microgrid Testbed, Mahmoud Saleh, Yusef Esa, Yassine Mhandi, Werner Brandauer, Ahmed Mohamed

Publications and Research

This paper presents the design, control, energy management, and implementation of the City College of New York (CCNY) direct current (DC) microgrid laboratory testbed. This facility was custom designed and implemented by researchers at CCNY with minimal off-the-shelf components to enable significant flexibility and reconfiguration capability. The microgrid consists of renewable energy resources, energy storage system and controllable loads, and can operate in either a grid-connected or an islanded mode. The design steps, requirements, and results of the developed testbed were discussed. Moreover, several operational scenarios were tested. The experimental results verify the applicability and flexibility of the developed microgrid …


Impact Of Clustering Microgrids On Their Stability And Resilience During Blackouts, Mahmoud S. Saleh, Ammar Althaibani, Yusef Esa, Yassine Mhandi, Ahmed Mohamed Apr 2016

Impact Of Clustering Microgrids On Their Stability And Resilience During Blackouts, Mahmoud S. Saleh, Ammar Althaibani, Yusef Esa, Yassine Mhandi, Ahmed Mohamed

Publications and Research

In this paper, the impact of clustering multiple microgrids during blackouts, on their stability and supply availability, will be investigated. Microgrids have the capability of satisfying their emergency loads during blackouts. However, distributed energy resources (DERs)-dominated microgrids are affected by the uncertainty of their input energy supply, e.g. impact of solar irradiance on photovoltaic (PV) output. Moreover, an individual islanded microgrid is prone to instability issues due to large sudden load/generation changes. In order to increase the supply security, and enhance system stability, we propose to use the existing distribution grid infrastructure, if applicable, during blackouts to form microgrid clusters. …